• 제목/요약/키워드: HPLC resolution

검색결과 120건 처리시간 0.028초

하고초의 생리활성 성분 Triterpenic Acids의 FAB-MS를 이용한 구조 규명 (Structural determination of triterpenic acids in Prunellae Spica by fast atom bombardment tandem mass spectrometry)

  • 안영민;이강노;홍종기
    • 분석과학
    • /
    • 제21권4호
    • /
    • pp.245-258
    • /
    • 2008
  • 본 연구에서는 하고초의 지표성분인 triterpenic acids 5종을 컬럼 크로마토그래피와 역상 HPLC를 이용하여 추출 및 분리했고, 이들 성분의 순도는 90% 이상임을 HPLC를 이용하여 확인했다. 고속원자충돌 이온화법-고분해능 질량분석기(FAB-HRMS)를 사용하여 지표성분의 분자량 및 원소조성을 결정했으며, 지표성분의 구조 분석은 FAB-MS/MS 의해 음이온 및 양이온 모드에서 수행하였다. Triterpenic acid류의 충돌유발분해(collision-induced dissociation, CID) 탄뎀질량분석(MS/MS) 스펙트럼에서 protonated molecule인 $[M+H]^+$ 및 deprotonated molecule인 $[M-H]^-$ 이온의 CID는 주로 retro Diels-Alder (RDA), 탈수 (dehydration) 및 탈탄산(decarboxylation) 반응에 의한 다양한 생성이온들이 나타났다. 특히, $[M-H]^-$이온의 CID-MS/MS 스펙트럼에서는 charge-remote fragmentation (CRF) 현상에 의한 이온들도 특성이온으로 나타났다. 이들 CID-MS/MS 스펙트럼의 해석을 통하여 하고초의 지표성분인 triterpenic acids의 구조 규명을 수행하였다.

바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드 (Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF

Enantioseparation by Sonochromatography

  • Ryoo, Jae-Jeong;Song, Young-Ae;Jeong, Young Han;Hyun, Myung-Ho;Park, Jung-Hag;Lee, Won-jae
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.637-641
    • /
    • 2006
  • Although chiral separation has been one of the main topics of chromatographic practice for over twenty-five years, it still presents many difficulties. In this work, the ultrasonic dependence of chiral resolution was investigated at various temperatures to improve resolution and reduce analysis time. The chiral resolution was performed on recently commercialized two HPLC chiral stationary phases (CSP 1 and CSP 2) with the analogues of racemic N-acylnaphthylethylamines (1a-d) and racemic amino acid derivatives (2a-c, 3a-c) as analytes. The CSP 1 was prepared from a (R)-N-(3,5-dinitrobenzoyl)phenylglycinol and the CSP 2 was prepared from a (S)-N-3,5-(dinitrobenzoyl) leucine. From the comparison of the chromatographic results under sonic condition with those under non-sonic condition, we found that the ultrasound decreased the elution time in chiral chromatography at all temperatures and improved the enantioselectivity at high temperature (45, 50, 60 ${^{\circ}C}$).

Liquid Chromatographic Resolution of N-(3,5-Dinitrobenzoyl)-α-amino Acids on a New Chiral Stationary Phase: the First Liquid Chromatographic Utilization of a Double-Ureide Pocket for the Recognition of Chiral Carboxylate Anions

  • Hyun, Myung-Ho;Kim, Seung-Nam;Choi, Hee-Jung;Sakthivel, Pachgounder
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1980-1984
    • /
    • 2007
  • An HPLC chiral stationary phase (CSP) which has only two ureide functional groups was prepared starting from (1S,2S)-1,2-diaminocyclohexane. The CSP was successful in the resolution of various N-(3,5- dinitrobenzoyl)-α-amino acids, the separation (α) and the resolution factors (RS) being within the range of 1.11-1.35 and 2.19-5.17, respectively with the use of 20% 2-propanol in hexane containing 0.1% trifluoroacetic acid as a mobile phase. However, ethyl esters of N-(3,5-dinitrobenzoyl)-α-amino acids were not resolved or resolved with only marginal separation and resolution factors on the CSP under the identical mobile phase condition. From these results, the complexation of the carboxylate anions of analytes inside the double-ureide pocket of the CSP was expected to play some important role for the chiral recognition. In contrast, N-(3,5- dinitrobenzoyl)-α-amino acid N-propylamides were resolved on the CSP with reasonable separation and resolution factors. Enantioselective hydrogen bonding interactions between analytes and the CSP were presumed to be responsible for these resolutions.

키랄 고성능 액체 크로마토그래피를 이용하 이부프로펜의 분리도에 관한 실험식 (Empirical Equation for Resolution if Ibuprofen Enantiomers by Chiral High-Performance Liquid Chromatography)

  • 여미순;노경호
    • KSBB Journal
    • /
    • 제18권4호
    • /
    • pp.261-265
    • /
    • 2003
  • 이부프로펜 중 S-enantiomer는 약물학적 효과를 갖고 있으나 R-enantiomer는 여러 가지 부작용을 갖고 있다. 이런 라세미 혼합물은 키랄 고성능 액체 크로마토그래피를 이용하여 효과적으로 분리 할 수 있었다. 실험에서 이용한 column(3.9 ${\times}$ 300 mm)은 Kromasil 10 $\mu\textrm{m}$를 충진하였고, 이동상으로는 n-hexane/tert-butyl methyl ether/acetic acid를 사용하였다. 유속은 1.0 $m\ell$/min 주입부피는 5 ${\mu}\ell$이고, UV 검출기의 wavelength는 220 nm이며 실온에서 실험하였다. 라세미 형태의 이부프로펜을 키랄 고정상으로 채워진 컬럼을 이용하여 이동상의 조성비를 바꿔가면서 이동상의 조성 변화에 따른 두 물질의 분리도의 상관식을 얻었다. 이 상관식을 이용하여 각 조성에 분리도에 미치는 영향을 정량적으로 표시하였고 보간법 또는 외사법에 의하여 실험이외의 조성에 대한 분리도를 예측할 수 있는 장점이 있다.

Method for Screening and Confirming Meldonium in Human Urine by High-Resolution Mass Spectrometry and Identification of Endogenous Interferences for Anti-Doping Testing

  • Kim, Yongseok;Jeong, Dawon;Min, Hophil;Sung, Changmin;Park, Ju-hyung;Son, Junghyun;Lee, Kang Mi;Kim, Ho Jun;Lee, Jaeick;Kwon, Oh-Seung;Kim, Ki Hun
    • Mass Spectrometry Letters
    • /
    • 제8권2호
    • /
    • pp.39-43
    • /
    • 2017
  • Meldonium is a drug for treating ischemia by expanding the arteries but it can also enhance the performance of sports players. The World Anti-Doping Agency (WADA) has included it in the list of prohibited substances since 2016. Meldonium is one of the challenging substances for anti-doping testing because it is difficult to recover by general liquid-liquid or solid phase extraction due to its permanent charge and high polarity. Therefore, high-performance liquid chromatography (HPLC) is currently used by injecting a diluted urine sample (known as the "dilute-and-shoot" strategy). There is no loss of target compounds in the extraction/cleanup procedure but its high matrix effect could interfere in their separation or detection from the endogenous urinary compounds. We report a single method using high-resolution mass spectrometry that can be used for both screening and confirmation, which follows the "dilute-and-shoot" strategy. In this method, the endogenous compounds' interfering peaks in the mass spectrum are separated at a high resolution of FWHM 140,000, and the results are suitable for substance detection following the WADA guidelines. The interferences in the obtained mass spectrum of the urine matrix are identified as acetylcholine, lysine, and glutamine by further analysis and database searching. Validation of the method is performed in routine anti-doping testing, and the limit of detection is 50 ng/mL. This method uses simple sample preparation and a general reverse phase HPLC column, and it can be easily applied to other substances.

고속액체(高速液體) 크로마토그래피에 의(依)한 Ginsenoside ${-Rh}_1$${-Rh}_2$ 의 분리(分離) (Isolation of Ginsenoside${-Rh}_1$ and ${-Rh}_2$ by High Performance Liquid Chromatography)

  • 최진호;김우정;홍순근;오성기;대포언길
    • 한국식품과학회지
    • /
    • 제13권1호
    • /
    • pp.57-66
    • /
    • 1981
  • 인삼주성분 사포닌 및 미량성분 사포닌의 단리법에 대하여 HPLC의 응용을 검토하여 이미 보고한 바 있다. 따라서 인삼미량성분인 $Ginsenoside-Rh_1$ 및 미지성분인 $Ginsenoside-Rh_2$의 단리법을 검토하였다. 저자등의 방법에 따라 홍삼의 70% 에탄올추출액(4 kg)에서 부탄올추출액을 얻어 에틸 아세테이트로 처리 (실온에서 3시간 및 $60^{\circ}C$에서 3 시간)하여 에틸 아세테이트 획분(29g)을 preparative HPLC인 prep LC/System-500을 사용하여 부분분획하여 각 획분을 analtical HPLC/ALC-201로 동정, ginsenoside-Rh group을 다시 에테르, 에틸 아세테이트 및 물로 정제한 후, semipreparative HPLC/ALC-201로 $ginsenoside-Rh_1$$-Rh_2$를 단리했다. 미지성분단리에 HPLC의 응용이 효과적임이 판명되었다.

  • PDF

흰쥐에서 항염증제 후보물질 KAL-1120의 HPLC 분석 및 약물동태 (HPLC Analysis and Pharmacokinetics of KAL-1120, a Novel Anti-inflammation Agent, in Rats)

  • 신대환;이중열;박승혁;이경복;한건;정연복
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권2호
    • /
    • pp.101-107
    • /
    • 2010
  • A rapid and sensitive reversed-phase high performance liquid chromatography (HPLC) method was developed for the determination of N-(-4-Chlorophenyl)-6-hydroxy-7-methoxy-2-chromanecarboxamide (KAL-1120), a novel anti-inflammation agent, in the rat plasma. The method was applied to analyze the compound in the biological fluids such as bile, urine and tissue homogenates. After liquid-liquid extraction, the compound was analyzed on an HPLC system with ultraviolet detection at 275 nm. HPLC was carried out using reversed-phase isocratic elution with a $C_{18}$ column, a mobile phase of a mixture of acetonitril (40 v/v%) at a flow rate of 1.0 mL/min. The chromatograms showed good resolution and sensitivity and no interference of plasma. The calibration curve for the drug in plasma was linear over the concentration range of 0.05-50 ${\mu}g$/mL. The intra- and inter-day assay accuracies of this method ranged from 0.06% to 9.33% of normal values and the precision did not exceed 6.28% of relative standard deviation. The plasma concentration of KAL-1120 decreased to below the quantifiable limit at 1.5 hr after the i.v. bolus administration of 2-10 mg/kg to rats ($t_{1/2,({\alpha})}$ and $t_{1/2,({\beta})$ of 2.15 and 26.7 min at a dose of 2 mg/kg, 3.91 and 33.0 min at a dose of 10 mg/kg, respectively). The steady-state volume of distribution ($V_{dss}$) and the total body clearance ($CL_t$) were not significantly altered in rats given doses from 2 to 10 mg/kg. Of the various tissues tested, KAL-1120 was mainly distributed in the lung and heart after i.v. bolus administration. KAL-1120 was detected in the bile by 30 min after its i.v. bolus administration. However, the concentration in the urine after i.v. bolus administration became too low to measure, suggesting that KAL-1120 is mostly excreted in the bile. In conclusion, this analytical method was suitable for the preclinical pharmacokinetic studies of KAL-1120 in rats.

추출 및 분획조건에 따른 인삼 조사포닌 중 ginsenoside 조성 차이 (The Difference of Ginsenoside Compositions According to the Conditions of Extraction and Fractionation of Crude Ginseng Saponins)

  • 신지영;최언호;위재준
    • 한국식품과학회지
    • /
    • 제33권3호
    • /
    • pp.282-287
    • /
    • 2001
  • 인삼 조사포닌을 기존의 고온 MeOH 추출/n-BuOH 분획법 및 고온 MeOH 추출/Diaion HP-20 흡착/MeOH 용출법과 새로이 시도된 고온 MeOH 추출/cation AG 50W흡착/$H_2O$ 용출/n-BuOH 추출법(AG 50W법), 상온 MeOH 추출/Diaion HP-20 흡착/MeOH 용출법(상온추출법)과 EtOAc/n-BuOH 직접 추출법으로 분리한 다음 기존의 HPLC/RI 방법으로 ginsenoside조성을 비교한 결과 EtOAc/n-BuOH 직접 추출법을 제외하고는 큰 차이가 없었으나 분리능과 감도가 우수한 HPLC/ELSD방법을 사용한 결과, ginsenoside $Rb_2$, Rf, $Rg_1$$Rh_1$ 등을 뚜렷이 식별할 수 있었고 추출 및 분획방법에 따라 조사포닌간 ginsenoside의 현저한 조성차이를 볼 수 있었다. 특히 AG 50W법에 의해 분리된 조사포닌에서 뚜렷한 prosapogenin 피크를 볼 수 있었으며 LC/MS의 결과, ginsenoside $Rb_1$, $Rb_2$ 등의 7종의 주종 사포닌 이외에도 5종의 prosapogenin과 1종의 chikusetsusaponin을 포함한 총 13종의 ginsenoside를 동정하였다. 새로이 정립한 HPLC 분석조건, 즉 $NH_2$ 대신에 $C_{18}$ column을 사용하고 $KH_2PO_4/CH_3CN$ gradient로 상온추출법으로 분리한 조사포닌을 분석한 결과, malonyl ginsenoside 피크를 용이하게 확인할 수 있었다.

  • PDF

포스포디에스테라제 III의 저해물인 KR-30075의 흰쥐에서의 약물속도론 (Pharmacokinetics of KR-30075, A Potent Phosphodiesterase III Inhibitor in Rats)

  • 이광표;김효진;권광일;조송자
    • 약학회지
    • /
    • 제36권3호
    • /
    • pp.259-268
    • /
    • 1992
  • A procedure for the determination of KR-30075 and its metabolites in plasma and urine by high performance liquid chromatography is described. For the study of pharmacokinetic properties of KR-30075, a new PDE III inhibitor, the plasma concentration and urinary excretion after an oral administration of KR-30075 (4 mg/kg) in the male rat (Sprague Dawley) were determined by high performance liquid chromatography. The best extraction efficiency of KR-30075 and KR-30072 is obtained with ethyl ether adjusted to pH 4.0. Retention times of both KR-30072 and KR-30075 were within 5 min and resolution was complete at the flow rate of 1.0 ml/min. The sensitivity and specificity of this HPLC assay appears to be satisfactory for the pharmacokinetic study of KR-30075 and its metabolites. One-compartment open model with first-order absorption was applied to evaluate the pharmacokinetic parameters of KR-30075 according to Minimum AIC Estimation. $T_{max}$ was 1 hr, $C_{max}$ was $0.789{\pm}0.31\;{\mu}g/ml$ and elimination half $T_{1/2}$ was 6.31 min after oral administration of 4 mg/kg KR-30075 to male rats.

  • PDF