• Title/Summary/Keyword: HPLC analysis methods

Search Result 485, Processing Time 0.027 seconds

Simultaneous Quantification Analysis of Multi-components on Erycibae Caulis by HPLC (HPLC를 이용한 정공등의 다성분 동시함량분석)

  • Jeon, Hye Jin;Liu, Ting;Whang, Wan Kyunn
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.272-281
    • /
    • 2013
  • In this study, we developed and validated the HPLC method using the isolated components from Erycibae caulis. Their structures were elucidated by spectroscopic methods including UV, $^1H$-NMR, $^{13}C$-NMR, FAB-Mass and ESI-Mass as Compound 1 (crypto-chlorogenic acid), Compound 2 (scopolin), Compound 3 (neochlorogenic acid) and Compound 4 (3,4-di-O-caffeoylquinic acid). Major three compounds and scopoletin were decided as representative components of Erycibae caulis. We established HPLC analytical method by using the representative components and 20 commercial samples which were collected considering to various cultivated area. The HPLC fingerprinting was successfully achieved with an AKZO NOBEL Kromasil 100-5C18 column. The mobile phase consisted of 0.5% acetic acid in water (A) and methanol (B) using gradient method of 85(A) to 50(A) for 35min. The fingerprints of chromatograms were recorded at an optimized wavelength of 330 nm. This developed analytical method was validated with specificity, selectivity, accuracy and precision. And it is suggested that scopolin, scopoletin, neochlorogenic acid, 3,4-di-O-caffeoylquinic acid were more than 0.162%, 0.133%, 0.057%, 0.044%, respectively. In addition, principal component analysis (PCA) was performed on the analytical data of 20 different Erycibae caulis samples in order to classify samples collected from different regions. We hope that this assay can be readily utilized as quality control method for Erycibae caulis.

A Study on Contents of Anti-impotence drug/drug-like compounds in Food (식품중 발기부전 치료제 및 유사물질 함량에 관한 조사연구)

  • Hong, Hae-Geun;Bang, Seon-Jae;Park, Kwang-Hee;Lee, In-Sook;Park, In-Jung;Park, Jeung-Hwa;Kim, Jong-Chan
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.3
    • /
    • pp.89-96
    • /
    • 2007
  • To determine 8 anti-impotence drug/drug-like compounds such as sildenafil, vardenafil, tadalafil, homosildenafil, hydroxyhomosildenafil, aminotadalafil, pseudovardenafil and hongdenafil in foods, simultaneously, high performance liquid chromatography(HPLC) and liquid chromatography-mass spectrometry (LC/MS) were used. The HPLC/UV analysis was performed on a column of capcellpak $C_{18}$ with 0.1% sodium-1-hexansulfonate in 0.2M ammonium formate/acetonitrile as a mobile phase. Mass spectra of the compounds by LC/MS were investigated with SCAN mode(Mass range and Fragment voltage) and SIM(Selected Ion Monitoring) mode (Ion target and Fragment voltage). The results follow as; 1. The HPLC/UV analysis was detected from 5 out of 63 samples. The content of sildenafil was in the range of 32.80 ppm ${\sim}$ 60.13 ppm from 4 out of 5 samples. The contents of sildenafil, vardenafil, homosildenafil were in the range 47.14 ppm from 1 out of 5 samples. 2. The conformed result of LC/MS was equal of detected from 5 out of 63 samples in HPLC/UV analysis. An easily available, simultaneous determination of 8 standards in adulterated health related foods was established by using a combination of LC/MS methods.

Identification of Novel Standard Compounds for Standardization of Sinbaro3 Pharmacopuncture (신바로3 약침의 표준화를 위한 지표물질 검색)

  • Lee, Jin-Ho;Lee, Jae-Woong;Kim, Min-Jeong;Kim, Eun-Jee;Lee, In-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.2
    • /
    • pp.65-72
    • /
    • 2015
  • Objectives To investigate and validate potential standard compounds for standardization of Sinbaro3 pharmacopuncture prepared at OO Hospital of Korean Medicine. Methods Sinbaro3 pharmacopuncture was prepared by extraction, purification and hydrolysis of Harpagophytum procumbens, and various potential standard compounds were quantified through HPLC-UV and HPLC-MS analysis. Validation was examined by assessing specificity, linearity, precision, and accuracy. Results The retention time of harpagide and cinnamic acid were 15.2 min and 28.2 min, respectively, and both showed good linearity in analysis by concentration at 0.9999 and 0.9998, respectively. Intra-day variation of precision was 0.0015~0.0045% and 0.0058~0.1629%, while inter-day variation of precision was 0.0011~0.0243% and 0.0098~0.1629%, and that of accuracy was 99.53~99.89% and 99.50~99.91%, respectively. Conclusions Harpagide and cinnamic acid, which are hydrolyzates of harpagoside within Sinbaro3 pharmacopuncture, were both validated using HPLC-MS and HPLC-UV analysis, and Sinbaro3 pharmacopuncture contained 78.41 ug/ml harpagide, and 2.05 ug/ml cinnamic acid.

Quantitative and Pattern Recognition Analyses for the Quality Evaluationof Herba Epimedii by HPLC

  • Nurul Islam, M.;Lee, Sang-Kyu;Jeong, Seo-Young;Kim, Dong-Hyun;Jin, Chang-Bae;Yoo, Hye-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.137-144
    • /
    • 2009
  • In this study, quantitative and pattern recognition analyses for the quality evaluation of Herba Epimedii using HPLC was developed. For quantitative analysis, five major bioactive constituents, hyperin, epimedin A, epimedin B, epimedin C, and icariin were determined. Analysis was carried out on Capcell pak $C_{18}$ column ($250{\time}4.6$ mm, 5 ${\mu}m$) with a mobile phase of mixture of acetonitrile and 0.1% formic acid, using UV detection at 270 nm. The linear behavior was observed over the investigated concentration range (2-50 ${\mu}g/mL;\;r_2\;>$ 0.99) for all analytes. The intraand inter-day precisions were lower than 4.3% (as a relative standard deviation, RSD) and accuracies between 95.1% and 104.4%. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of one reference sample. The RSD of intra- and inter-day variation of relative retention time (RRT) and relative peak area (RPA) of the 12 selected common peaks were below 0.8% and 4.7%, respectively. The developed methods were applied to analysis of twenty Herba Epimedii extract samples. Contents of hyperin, epimedin A, epimedin B, epimedin C, and icariin were calculated to be 0$\sim$0.79, 0.69$\sim$1.91, 0.93$\sim$9.58, 0.65$\sim$3.05, and 2.43$\sim$11.8 mg/g dried plant. Principal component analysis (PCA) showed that most samples were clustered together with the reference samples but several apart from the main cluster in the PC score plot, indicating differences in overall chemical composition between two clusters. The present study suggests that quantitative determination of marker compounds combined with pattern-recognition method can provide a comprehensive approach for the quality assessment of herbal medicines.

HPLC Analysis and Extraction Methods of Decursin and Decursinol Angelate in Angelica gigas Roots (당귀(Angelica gigas) 중 Decursin 및 Decursinol Angelate 추출 방법과 HPLC 분석)

  • Lee, Jang-Hoon;Chae, Hee-Jeong;Kim, Dong-Hyun;Lee, Sang-Hyun;Park, Sang-Yong;Kang, Young-Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.201-205
    • /
    • 2003
  • This paper is intended as an investigation of the analysis of high-performance liquid chromatography and the method of extraction of decursin and decursinol angelate in Angelica gigas roots. There are three kinds of extraction methods: distilled water, 50% EtOH and 100% EtOH. The condition of HPLC was obtained on a reversed-phase column $(Polarity\;dC_{18},\;4.6{\times}250 mm,\;5\;{\mu}m)$ using a phosphate buffer-acetonitrile-sodium lauryl sulfate as the mobile phase. Under these chromatographic conditions, UV detector was 230 nm, column temperature $30^{\circ}C$ and the speed of a current 1.0 ml/min, respectively. The results of extraction with distilled water, 50% EtOH and 100% EtOH in Angelica gigas roots were as follows. The concentrations of decursin and decursinol angelate were 182 and 153 ppm (distilled water), 3,142 and 2,547 ppm (50% EtOH) and 3,341 and 2,778 ppm (100% EtOH). There were high positive correlations between the concentrations of decursin and EtOH (r=0.8928, p<0.01) and decursinol angelate and EtOH (r=0.9009, p<0.01).

Comparison of Analytical Methods for the Detection of Paralytic Shellfish Toxins (PSTs) (마비성패류독소 검출을 위한 분석법 비교)

  • Lee, Ka Jeong;Kwon, Soon Jae;Jung, Yeoun Joong;Son, Kwang Tae;Ha, Kwang Soo;Mok, Jong Soo;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.669-674
    • /
    • 2017
  • Paralytic shellfish toxins (PSTs) are produced by marine dinoflagellate phytoplankton Alexandrium spp. and Gymnodinium spp. These toxins accumulate in filter feeding organisms such as bivalves and the ingestion of contaminated shellfish can cause illness in humans. The mouse bioassay (MBA) has been the preferred PST testing method worldwide for more than 50 years. However, this assay has several disadvantages, such as detection limits, non-toxic-profiles, and the ethical issues of using animals. The aim of this study was to establish an alternative to the MBA method for testing for PSTs. We optimized the analysis conditions of a post-column oxidation-high performance liquid chromatography (PCOX-HPLC) method and the Scotia Rapid Test Kit, and then compared the accuracy of these methods to the MBA method. The results demonstrated a strong correlation between the PCOX-HPLC method and the MBA, although the PCOX-HPLC method required expensive equipment and standard material, and was time consuming. The Scotia Rapid Test Kit promises to be a useful tool, as it provided rapid and qualitative results, although the method sometimes gave a false positive result that could not be explained by toxin profiles.

Assessment of the Purity of Emodin by Quantitative Nuclear Magnetic Resonance Spectroscopy and Mass Balance

  • Park, Sojung;Choi, Yu-Jin;Do, Giang Hoang;Seo, Eun Kyoung;Hyun, Seunghun;Lee, Dongho
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.222-227
    • /
    • 2019
  • Quantitative nuclear magnetic resonance (qNMR) is a well-established method adopted by international pharmacopoeia for quantitative and purity analyses. Emodin is a type of anthraquinone, well known as the main active component of Fabaceae, Polygonaceae and Rhamnaceae. Purity analysis of emodin is usually performed by using the high-performance liquid chromatography (HPLC)-UV method. However, it cannot detect impurities such as salts, volatile matter, and trace elements. Using the qNMR method, it is possible to determine the compound content as well as the nature of the impurities. Several experimental parameters were optimized for the quantification, such as relaxation delay, spectral width, number of scans, temperature, pulse width, and acquisition time. The method was validated, and the results of the qNMR method were compared with those obtained by the HPLC and mass balance analysis methods. The qNMR method is specific, rapid, simple, and therefore, a valuable and reliable method for the purity analysis of emodin.

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

Determination of Aflatoxins Using High-Performance Liquid Chromatography and Fluorescence or UV Absorbence Detection (HPLC에 의한 aflatoxin 분석법에 관한 연구 형광 및 자외선 흡광 검출의 비교)

  • 김종규;강회양;민경진
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1996
  • A comparison was made of two detection methods(UV absorbence detection and fluorescence detection with pre-column derivatization, with trifluoroacetic acid) coupled with HPLC for the simultaneous determination of aflatoxin $B_1, B_2, G_1$ and $G_2$. A good separation of the four aflatoxins was achieved on a reversed-phase $C_{18}$ column (30 cm x 3.9 mm) with methanol-acetonitrile-water(20+20+60) for absorbence detection or acetonitrile-water(25+75) for fluorescence detection at the flow rate of 1.0 ml/min. The calibration graphs were linear over the ranges 100 ppb-1 ppm for $B_1/G_1$ and 30~300 ppb for $B_2/G_1$ with absorbence detection, and 1~500 ppb for $B_1/G_1$ and 0.3~150 ppb for $B_2/G_2$ with fluorescence detection. The correlation coefficients were greater than 0.94 and 0.99 for absorbance detection and for fluorescence detection, respectively. The detection limit was 100 ng for $B_1/G_1$ and 30 ng for $B_2/G_2$ with absorbence detection, and 1 ng for $B_1/G_1$ and 0.3 ng for $B_2/G_2$ with fluorescence detection. Recovery rates of aflatoxin $B_1, B_2, G_1$ and $G_2$ added to yeast-extract sucrose broth medium were 66.6%, 59.4%, 67.5% and 59.2%, respectively, for absorbence detection and 82.9%, 71.5%, 80.0% and 69.3%, respectively, for fluorescence detection. The four aflatoxins in culture medium were quantitatively detected by the two methods. The aflatoxins in the rice sample were not detected the absorbence detection method, but were below 10 ppb using the fluorescence detection method. Analysis of aflatoxins by both the absorbence and fluorescence methods coupled with HPLC showed acceptable linearity and good recovery. The absorbence detection was less timeconsuming and safer for treatment. The fluorescence detection was more elective and sensitive though elevated $B_1$ and $G_1$ contents were determined from the TFA-induced conversion of $B_1$ to $B_{2a}$ and $G_1$ to $G_{2a}$.

  • PDF

Comparison of Oligosaccharyltransferase Assay Methods Using a Fluorescent Peptide (형광펩타이드를 이용한 Oligosaccharyltransferase Assay 방법 연구)

  • Kim, Seong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • Oligosaccharyltransferase (OTase) catalyzes the transfer of a lipid-linked oligosaccharide (LLO) to the nascent polypeptide. Most eukaryotes have an OTase composed of a multisubunit protein complex. However, the kinetoplastid Leishmania major and the bacterium Campylobacter jejuni have only a single subunit for OTase activity, Stt3p and PglB, respectively. In this study, a new in vitro assay for OTase was developed by using a fluorescent peptide containing N-glycosylation sequon, Asn-Xaa-Thr/Ser, where Xaa can be any amino acid residue except Pro. L. major Stt3p and C. jejuni PglB as a model OTase enzyme demonstrated the formation of glycopeptides from a fluorescent peptide through OTase activities. For separation and measurement of the glycopeptides produced by the OTases, Tricine-SDS-PAGE, a lectin column and fluorospectrophotometer, and HPLC were applied. Comparison of these assay methods for analyzing a fluorescent glycopeptide showed HPLC analysis is the best method for separation of glycopeptides and nonglycosylated peptides as well as for quantify the peptides than other methods.