• Title/Summary/Keyword: HPGe 계측기

Search Result 14, Processing Time 0.023 seconds

Efficiency Calibration of HPGe Detector in Normal ana Coincidence Mode for the Determination of Prompt Gamma-ray (즉발감마선 측정을 위한 HPGe 검출기의 전계수 또는 동시계수모드에서의 광대역 계측효율 보정)

  • 송병철;박용준;지광용
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • Neutron induced prompt gamma-ray spectroscopy(NIPS) system measures the prompt gamma-ray emitting by the interaction of a neutron with various materials. This system will be of great benefit to scientists worldwide, since it provides the non-destructive measurement of many element in either solid or liquid wastes. In this study, the full-energy-peak (FEP) efficiency calibration for a HPGe detector was constructed in the ${\gamma}$-ray energy range from 80 keV to 8 MeV, using $^{l33}$Ba and >TEX>$^{152}Eu$ RI sources and $ ^{35}Cl(n, ${\gamma}$)^{36}Cl$ thermal neutron captured reaction. The FEP efficiency curve for the higher energies using the $^{35}Cl(n, ${\gamma}$)^{36}Cl$ reaction was normalized with the curve obtained from the RI sources, since the accurate activity of its prompt ${\gamma}$-ray is unknown. The average thermal neutron flux was theoretically calculated using the FEP efficiency curve for the KCl standard solutions. The NIPS system equipped with a ${\gamma}$-${\gamma}$ coincidence setup with two n-type coaxial HPGe detectors was considered in order to reduce the interfering ${\gamma}$-ray background. The FEP efficiency curve for the ${\gamma}$-${\gamma}$ coincidence system was also obtained for full energy range. The performance of the normal and coincidence NIPS system was tested by comparing signal-to-noise ratio in each mode using the reference sample.e.

  • PDF

Development of Neutron Induced Prompt γ-ray Spectroscopy System Using 252Cf (252Cf 선원을 이용한 즉발감마선 계측시스템 구성)

  • Park, Yong-Joon;Song, Byung-Chul;Jee, Kwang-Yong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2003
  • For the design and set-up of neutron induced prompt ${\gamma}$-ray spectroscopy system using $^{252}Cf$ neutron source, the effects of shielding and moderator materials have been examined. The $^{252}Cf$ source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The ${\gamma}$-ray background and prompt ${\gamma}$-ray spectrum of the sample containing Cl were measured using HPGe (GMX 60% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and ${\gamma}$-rays were measured with neutron survey meter as well as ${\gamma}$-ray survey meters, respectively and the system was designed to minimize the activities. Prompt ${\gamma}$-ray spectrum was measured using ${\gamma}$-${\gamma}$ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained.

Corrections of Self-Absorption Effect Using the Monte Carlo Method in the Radioactivity Analysis of Environmental Samples (환경시료의 방사능 분석에서 Monte Carlo 방법을 이용한 자체흡수 효과 보정)

  • Seo, Bum-Kyoung;Lee, Dae-Won;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Tae-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • In the low level radioactivity measurement, such as environmental radioactivity, there were used commonly cylindrical and Marinelli type beakers by means of measurement container. If there are differences in the matrix density or sample height between standard source and sample, it must be determined full energy peak efficiency considering self absorption effect. In this paper, we compared measured efficiency with calculated full energy peak efficiencies in the HPGe detector using the Monte Carlo method. For cylindrical container, we calculated the variation of the efficiency with sample height. Also, we calculated the variation of the detection efficiency with apparent density in the cylindrical and Marinelli container. It was seen that it need to be corrected for self absorption in the energy range of below 1000keV. Also, in order to verify the validity of calculation, we compared the calculated value with reference value using NIST SRM 4353 reference soil.

  • PDF

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Development of Effective ${\gamma}$-ray and ${\beta}$-ray Detection Methods For Low-Level Radioactive Wastes (극저준위 방사성 폐기물을 위한 효율적인 ${\gamma}$-선 및 ${\beta}$-선 측정 방법 개발)

  • Kwak, Sung-Woo;Yeom, Yu-Sun;Kim, Ho-Kyung;Cho, Gyu-Seong;Park, Joo-Wan;Kim, Chang-Lak;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.393-398
    • /
    • 2001
  • The non-combustible RI wastes disposed of in hospital every year emit ${\gamma}$-ray or ${\beta}$-ray but their activities are very low to the extent of background. Development of more simple methods is needed because the conventional detection methods are so ineffective and complex. In this study, to solve this problem, detection method using efficiency curve for ${\gamma}$-ray emitting radioactive wastes measurement is proposed and experimental detection efficiency equation is also determined through HPGe's standard specimen measurement. For ${\beta}$-emitting radioisotopes detection, new measurement method using detection efficiency estimated by Monte Carlo simulation and SBD measurements is also proposed. According to the results of this paper, the unknown activity of low-level radioactive wastes without LSC requiring the preparation of standard sample and measurement for standard source detection efficiency could be determined efficiently and simply about ${\pm}17%$ in errors by using the theoretical detection efficiency and the SBD measurement result.

  • PDF

A Study on Minimum Detection Limit of Environmental Radioactivity in HPGe Detector (HPGe 검출기에서 환경방사능측정의 검출하한치에 관한 연구)

  • Jang, Eun-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • Based on basic concept of detection limit, sample measurement time & background measurement time was considered, and MDA values according to background measurement time and sample measurement time in land samples(river soil, surface soil, drinking water, underground water, surface water, pine leaf, mugwort) analysis among environmental samples were compared. Seeing the water sample analysis result, it was shown that most of the samples were not detected, and most of the samples in land specimen analysis showed to be below the detection limit of "Ministry of Education, Science and Technology Announcement Je-2008-28-ho", but $^{137}Cs$ which is one of artificial radioactive nuclide was detected in some samples. It can be traced back to 1950s and 1960s when nuclear tests were carried out in atmosphere and catastrophic Chernobyl atomic power station accident that caused fallouts in the sky, and this is common level of detection that can be observed worldwide. Seeing the result that the $^{134}Cs$(which is a isotope of $^{137}Cs$, and it has relatively short half life) was not detected in all samples, it can be considered it doesn't affect to the operation of atomic power station.

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio (감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구)

  • Kim, Jun-Ha;Cheong, Jea-Hak;Hong, Sang-Bum;Seo, Bum-Kyung;Lee, Byung Chae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.

A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry (감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구)

  • Cho, Yoonhae;Seol, Bitna;Min, Kyoung Ok;Kim, Wan Suk;Lee, Junbae;Lee, Soohyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • The radioactive iodine ($^{131}I$) presents in the environment through the excrete process of nuclear medicine patients. In the detecting of low level of $^{131}I$ in the public water, the counting uncertainty has an effect on the accuracy and reliability of detecting $^{131}I$ radioactivity concentration. In this study, the contribution of sample amount, radioactivity concentration and counting time to the uncertainty was investigated in the case of public water sample. Sampling points are public water and the effluents of a sewage treatment plant at Sapkyocheon stream, Geumgang river. In each point, 1, 10 and 20 L of liquid samples were collected and prepared by evaporation method. The HPGe (High Purity Germanium) detector was used to detect and analyze emitted gamma-ray from samples. The radioactivity concentration of $^{131}I$ were in the range of 0.03 to 1.8 Bq/L. The comparison of the counting uncertainty of the sample amount, 1 L sample is unable to verify the existence of the $^{131}I$ under 0.5 Bq/L radioactivity concentration. Considering the short half-life of $^{131}I$ (8.03 days), a method for measuring 1 L sample was used. However comparing the detecting and preparing time of 1, 10 L respectively, detecting 10 L sample would be an appropriate method to distinguish $^{131}I$ concentration in the public water.

Analysis of 766 keV Gamma Peak from NPP Environmental Samples (원전주변 환경시료의 766 keV 감마선에너지 피크에 대한 해석)

  • Kim, Wan;Lee, Hae-Young;Yang, He-Sun;Park, Hae-Soo;Kim, Bong-Kuk;Park, Hwan-Bae;Kim, Hong-Joo;Lee, Sang-Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.190-194
    • /
    • 2009
  • Gamma spectral results for macroalgae samples taken from the environment of Ulchin nuclear power plants in Korea (east coast), showed 766 keV peaks, which were identified as $^{95}Nb$ by several research institutes. After the enhancement of liquid radioactive waste disposal facility at Ulchin NPP site, the $^{95}Nb$ amount in the liquid radioactive waste outflow has drastically reduced, but the expected reduction in $^{95}Nb$ specific activity from environmental samples did not actually show up on gamma spectroscopy. Detailed re-investigation revealed that along with 766 keV peak, other peaks (63, 92 and 1001 keV) from $^{234}Th-^{234}mPa$ decay series were also detected on spectroscopy, and that the measured half lives of the four peaks were very close to known half life of $^{234}Th-^{234}mPa$ decay series, which is 24.1 day. The measured gamma yield ratios of 766 keV peak to 1001 peak were very close to known ratio 0.35 for $^{234}mPa$. It is concluded that 766 keV peaks on gamma spectroscopy of Ulchin NPP environmental samples were mainly from $^{234}mPa$, which is one of naturally occurring radionuclides.