• Title/Summary/Keyword: HORTICULTURAL CROP

Search Result 1,109, Processing Time 0.03 seconds

Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers

  • An, Hyejin;Lee, Hwa-Yong;Shin, Hyeran;Bang, Jun Hyoung;Han, Seahee;Oh, Youn-Lee;Jang, Kab-Yeul;Cho, Hyunwoo;Hyun, Tae Kyung;Sung, Jwakyung;So, Yoon-Sup;Jo, Ick-Hyun;Chung, Jong-Wook
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.376-384
    • /
    • 2021
  • Agaricus bisporus is a popular edible mushroom that is cultivated worldwide. Due to its secondary homothallic nature, cultivated A. bisporus strains have low genetic diversity, and breeding novel strains is challenging. The aim of this study was to investigate the genetic diversity and population structure of globally collected A. bisporus strains using simple sequence repeat (SSR) markers. Agaricus bisporus strains were divided based on genetic distance-based groups and model-based subpopulations. The major allele frequency (MAF), number of genotypes (NG), number of alleles (NA), observed heterozygosity (HO), expected heterozygosity (HE), and polymorphic information content (PIC) were calculated, and genetic distance, population structure, genetic differentiation, and Hardy-Weinberg equilibrium (HWE) were assessed. Strains were divided into two groups by distance-based analysis and into three subpopulations by model-based analysis. Strains in subpopulations POP A and POP B were included in Group I, and strains in subpopulation POP C were included in Group II. Genetic differentiation between strains was 99%. Marker AB-gSSR-1057 in Group II and subpopulation POP C was confirmed to be in HWE. These results will enhance A. bisporus breeding programs and support the protection of genetic resources.

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens

  • Park, Jong Myong;You, Young-Hyun;Park, Jong-Han;Kim, Hyeong-Hwan;Ghim, Sa-Youl;Back, Chang-Gi
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.160-171
    • /
    • 2017
  • Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

Red Ginseng Extract Improves Liver Fibrosis in Mice Treated with the Endocrine Disruptor Bisphenol A (내분비교란물질 비스페놀 A를 처리한 마우스에서 홍삼 추출물의 간 섬유화 개선)

  • Choi, Jehun;Park, Chun Geon;Seo, Kyoung Hee;Kim, Hyung Don;Yoon, Ji Hye;Ahn, Young Sup;Kim, Jin Seong
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Bisphenol A (BPA), a known endocrine disruptor, induces toxicity in cells and in experimental animals. Ginseng extracts were evaluated to determine whether they can inhibit BPA-induced toxicity. The antioxidant activity of fresh ginseng extract (WGE), dried white ginseng extract (DGE), and dried red ginseng extract (RGE) was measured using the DPPH assay. WGE and RGE increased DPPH free radical scavenging activity. Cell viability was measured in HepG2 cells following treatment with BPA and ginseng extracts using the MTT assay. DGE and RGE increased HepG2 cell viability following treatment with $200{\mu}M$ BPA. RGE reduced levels of biochemical markers of liver damage, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) that increased in mice following treatment with BPA. In addition, the regeneration and proliferation of damaged liver cells were significantly increased in RGE-treated mice. Moreover, RGE inhibited hepatic fibrosis in the surrounding area and in the central vein of the liver microstructure. RGE also significantly inhibited BPA-induced cytotoxicity. In addition, RGE protected liver damage and regenerated liver tissues in BPA-treated animals. These results show that RGE may represent a potential candidate drug for the treatment and prevention of liver damage caused by environmental toxins.

Current status and prospects of the authentication of Angelica species (Angelica 속 식물의 종판별을 위한 연구현황 및 전망)

  • Gil, Jinsu;Park, Sang ik;Lee, Yi;Kim, Ho Bang;Kim, Seong-Cheol;Kim, Ok-Tae;Cha, Seon-Woo;Jung, Chan Sik;Um, Yurry
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.151-156
    • /
    • 2016
  • Medicinal plants resources are becoming important assets since their usages have been expanded to the development of functional foods for human health, natural cosmetics, and pharmaceutical industries. However, names are different from each country and their phylogenetic origins are not clear. These lead consumers to be confused. In particular, when they are morphologically similar and distributed as dried roots, it is extremely difficult to differentiate their origins even by specialists. Recently, molecular markers have been extensively applied to identify the origin of many crops. In this review, we tried to overview the current research achievements for the development of suitable 'origin identification' regarding to the differentiation of Angelica species. Furthermore, more advanced techniques including amplification genome based marker analyses are also discussed for their practical applications in the authentication of particular medicinal plant in Angelica species.

Biological Activities of Licorice F1 Lines and Content Analysis of Phytochemical Constituents

  • Park, Chun-Geon;Lee, Ah Young;Lee, Jeong Hoon;Lee, Jeong Min;Park, Jun Yeon;Lee, Sang-Hoon;Choi, Ae Jin;Park, Chung Berm;Cho, Eun Ju;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2014
  • The biological activities of licorice F1 (Glycyrrhiza glabra ${\times}$ G. uralensis) lines (G) were investigated, revealing strong radical scavenging activity targeting 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (${\cdot}OH$) radicals. At a concentration of $100{\mu}g/mL$, most of the licorice F1 lines scavenged DPPH and ${\cdot}OH$ by more than 80%. Gs-1, -2, and -6 can be considered good scavengers of DPPH radical and G-7 have higher antioxidant activity against ${\cdot}OH$ radical. In addition, licorice F1 lines exerted effective anti-microbial activities against Escherichia coli (Gs-12, -17, and -18) and Staphylococcus aureus (Gs-3, -4, -5, -21, and -26). Moreover, Gs-2, - 20, -31, and -32 effectively inhibited the growth of Helicobacter pylori. Among licorice F1 lines, Gs-25 exhibited high anti-inflammatory effects on nitric oxide produced by lipopolysaccharide- and interferon-${\gamma}$-activated RAW 264.7 cells. Furthermore, Gs-1, -12, and -20 inhibited the growth of AGS human gastric adenocarcinoma cells by more than 60% at a concentration of $100{\mu}g/mL$ and Gs-5, -11, -19, and -32 showed inhibitory effects against rat lens aldose reductase ($IC_{50}$ values, 1.69, 6.07, 6.12, and $4.54{\mu}g/mL$, respectively). The total content of glycyrrhizin (1), glycyrrhetinic acid (2), glabridin (3), and isoliquiritigenin (4) in licorice F1 lines was high in Gs-11, -15, and -30. The present study therefore indicated that Gs-2, -26, -31, and -32 of licorice F1 possessing strong anti-oxidative, anti-microbial, anti-inflammatory, anti-cancer, and aldose reductase inhibitory effects may be used as a possible source material for natural health supplements in the future.

Chemical Composition and Protective Effect of Essential Oils Derived from Medicinal Plant on PC12 Neuro-cells Induced by Oxidative Stress (약용식물 유래 정유성분 분석 및 산화 스트레스로부터 PC12 신경세포 보호 효과)

  • Lee, Ji Yeon;Park, Jeong-Yong;Kim, Dong Hwi;Choi, Su Ji;Jang, Gwi Young;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.2
    • /
    • pp.215-221
    • /
    • 2020
  • The purpose of this study was to investigate the protective effect on oxidative stress induced PC12 cells, and volatile flavor composition of essential oils derived from medicinal plant seeds- Gossypium hirsutum L. (G. hirsutum), Coix lachryma-jobi (C. lachryma-jobi) and Oenothera biennis (O. biennis). The essential oils were obtained by the solvent (hexane) extraction method from the seeds. The essential oils of the seeds were analyzed by the solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). The major compounds of G. hirsutum, C. lachryma-jobi and O. biennis were cyclonexanol (16.65%), β-asarone (14.29%) and ylangene (50.01%). The DPPH radical scavenging activity (IC50) was the highest value of 8.52 mg/mL in the O. biennis. Additionally, IC50 values of G. hirsutum and C. lachryma-jobi were 26.76 mg/mL and 36.81 mg/mL. For the oxidative stress on PC12 cells, we treated with hydrogen peroxide (H2O2). The pretreatment of oxidative stress induced PC12 cells with all the essential oils preserved or increased their cell viability and G. hirsutum and O. biennis attenuated the ROS generation (by 68.75% and 56.25% vs. H2O2 control). The results of this study suggest that the essential oils derived from medicinal plant seeds could be used as valuable back data as a natural essential oil material to prevent neurodegenerative diseases by protecting neuro-cells.

Relationship between Soil Management Methods and Soil Chemical Properties in Protected Cultivation

  • Kang, Yun-Im;Lee, In-Bog;Par), Jin-Myeon;Kang, Yong-Gu;Kim, Seung-Heui;Ko, Hyeon-Seok;Kwon, Joon-Kook
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Various cultural practices have been promoted as management options for enhancing soil quality and health. The use of soil management methods can cause changes in fertility by affecting soil chemical properties. This study aimed to evaluate interactions between soil chemical properties and soil management methods in protected cultivation, and to classify soil management methods that similarly affect soil chemical properties. Water-logging and irrigation reduced soil pH and available $P_2O_5$ content. Application of animal manures has a positive effect on levels of organic matter, Av.$P_2O_5$, K, Zn, and Cu. The electrical conductivites tened to be low in the application of organic amendments, including rice and wood residues. Deeper plowing caused a reduction in Ca content. Practicing soil nutrient-considering fertilization and fertigation did not exert an influence on nutrient element contents. In a cluster analysis of the soil management methods according to major nutrients, low similarities were found with deeper plowing and crop rotation with rice in comparison with other practices. In a cluster analysis by minor nutrient characteristics, crop rotation and application of animal manures and rice residues were linked at a high Ward's distance, while other practices were found to be relatively low distinct. Each soil management method has a similar or different effect on soil chemical properties. These results suggest the necessity of establishing limits and standards according to the effects of soil management methods on soil chemical properties for economic soil practices.

Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Kim, Young-Chang;Lee, Jei-Wan;Seo, A-Yeon;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.504-513
    • /
    • 2011
  • In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.