• 제목/요약/키워드: HOLLOW CATHODE

검색결과 103건 처리시간 0.034초

HCD 이온 플레이팅 방법을 이용한 TiC 코팅에 관한 연구 (A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating)

  • 김인철;서용운;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.261-264
    • /
    • 1991
  • Titanium carbide(TiC) films were deposited on stainless-steel sheets using HCD(Hollow Cathode Discharge) reactive ion plating. Acetylene gas was used as the reactant gas. The characteristics of TiC films were examined by X-Ray diffraction, $\alpha$-step, ESCA(Electron Spectroscopy for Chemical Analysis), and, AES(Auger Electron Spectroscopy). The results were discussed with regard to various deposition conditions(bias voltage, acetylene flow rate, temperature).

  • PDF

할로우 캐소드 방전 스퍼터링 시스템을 이용한 대면적 $YBa_{2}$$Cu_{3}$ $O_{7-x}$박막 성장 (Growth of Large Area $YBa_{2}$$Cu_{3}$ $O_{7-x}$Thin Films by Hollow Cathode Discharge Sputtering System)

  • 서정대;강광용;곽민환
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.26-29
    • /
    • 1999
  • Superconducting $YBa_{2}$$Cu_{3}$ $O_{7-x}$(YBCO) thin films were deposited on MgO(100) substrates using a hollow cathode discharge sputtering system. Influence of the sputtering conditions such as substrate temperature and discharge sputtering gas pressure on electrical and structural properties were investigated. It was found that YBCO thin films with zero resistance temperature higher than 85 K were obtained to the pressure 200 mToorr(Ar/O2=0.9), substrate temperature of $760^{\circ}C$, and target-substrate distance of 10 mm during film deposition. Homogeneous large area YBCO films with 2 inch diameter were also sucessfully fabricated by this method.

  • PDF

복합 유체-입자(몬테칼로)법을 이용한 유사스파크 방전의 기동 특성 해석 (Ignition Characteristics Analysis of Pseudospark Discharge using Hybrid Fluid-Particle(Monte Carlo) Method)

  • 주흥진;심재학;강형부
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.270-274
    • /
    • 1997
  • The numerical model that can describe the ignition of the pseudospark discharge using hybrid fluid-particle method has been developed. The evolution process of the discharge has been divided into four phases along the potential distribution. After the plasma enters in the hollow cathode, the confining effect which is one of hollow cathode properties occurs and the electron current on anode rises rapidly. As the plasma expands successively, the sheath contracts and as the electric field in the sheath increases, the field-enhanced thermionic emission(Schottky emission) occurs. From numerical results, the physical mechanism that causes the rapid current rise in the ignition of the pseudospark discharge could be identified.

  • PDF

Slot형 구리 이온 레이저 (Slotted type copper ion laser)

  • 송순달;홍남관
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.291-296
    • /
    • 1997
  • Slot형의 구리 이온 레이저를 제작하여, 780 nm 레이저 동작을 위한 장치구조의 안정성과 특성을 조사했다. 구리 이온 레이저의 최대 출력을 다양한 동작조건 범위에서 측정했다. IR-레이저의 출력은 음극의 기하학적 구조, 방전전압, 그리고 기체압력에 주로 의존했다. 네온의 부분압력이 60%에 이르면 출력이 감소하였으며, 그 이유 중에 하나는 높은 레이저 준위의 Population이 감소했기 때문이다. 파장 780 nm는 레이저 전이가 구리 이온의 5p 준위에서 일어난다. 통형음극을 사용하는 본 실험의 레이저 장치는 헬륨과 네온 흡합기체 방전에서 동작되고, 100시간 동안의 방전시간 후에 출력감소가 35%이었다(활성길이 9.6cm에 대한 출력은 2.8 mW).

  • PDF

수치해석을 통한 초미세 방전 소자의 방전 특성 연구 (Nurmerical Study on the Discharge Characteristics of Cylindrical Microcavity Structure)

  • 서정현;강경두
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.641-647
    • /
    • 2008
  • In this paper, we have studied the basic discharge characteristics of ac-type cylindrical microcavity structure. The structure has a two electrodes, which are positioned in the bottom of the cavity and in the side wall of the cylinder, respectively. The discharge showed asymmetric phenomena depending on the position of a cathode electrode. When the bottom electrode was a cathode, the discharge was stronger even though the area of the cathode was smaller than that of the anode. Simulation results revealed that the focused electric field toward the bottom electrode increased ion density in the space which in turn strengthened the cathode sheath and ionization process.

계면 제어를 기반으로 한 고성능 전고체 전지 연구 (Review of interface engineering for high-performance all-solid-state batteries)

  • 황인수;이현정
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

노즐 형태 HCP RT-MOCVD에 의해 증착된 티타늄 산화막 특성 (The Characteristics of Titanium Oxide Films Deposited by the Nozzle-type HCP RT-MOCVD)

  • 정일현
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.194-200
    • /
    • 2006
  • 금속 산화막 공정에 응용하기 위하여 노즐형태 HCP (hollow cathode plasma) RT-MOCVD에 의해 티타늄 산화막을 증착하였다. TTNB (titanium n-butoxide)를 사용하였을 경우 막을 증착한 후 열처리하여야 하지만 titanium ethoxide에 의해 막을 증착하면 일반적으로 수반되는 열처리 공정을 생략하여도 티타늄 산화막이 직접적으로 형성되었다. RF-power 240 watt, 전극과 기판과의 거리가 3 cm, 반응시간 20 min, Ar와 $O_2$의 유량비 1 : 1에서 티타늄과 산소의 조성비가 1 : 2임을 확인할 수 있었다. 따라서 노즐형태 HCP RT-MOCVD에 의해 티타늄 산화막을 열처리 공정 없이 증착되었으며, 저온에서 다양한 금속 산화막 증착 공정에 응용할 수 있었다.

PLASMA-SULFNITRIDING USING HOLLOW CATHODE DISCHARGE

  • Urao, Ryoichi;Hong, Sung-pill
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.443-448
    • /
    • 1996
  • In order to plasma-sulfnitride by combining ion-nitriding of a steel and sputtering of MoS$_2$, chromium-molybdenum steel was plasma-sulfritrided using hollow cathode discharge with parallel electrodes which are a main of the steel and a subsidiary cathode of $MoS_2$. The treatment was carried out at 823K for 10.8ks under 665Pa in a 30% $N_2$-70% $H_2$ gas atmosphere. Plasma-sulfnitriding layers formed of the steel were characterized with EDX, XRD, micrographic structure observation and hardness measurement. A compound layer of 8-15$\mu\textrm{m}$ and nitrogen diffusion layer of about 400$\mu\textrm{m}$ were formed on the surface of plasma-sulfnitrided steel. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2_3N$ and $\gamma$'-$Fe_4N$ formed under the FeS. The thickness of compound layer and surface hardness were different with the gaps between main and subsidiary cathodes even in the same sulfnitriding temperature. The surface hardnesses after plasma-sulfnitriding were distributed from 640 to 830Hv. The surface hardness was higher in the plasma-sulfnitriding than the usual sulfnitriding in molten salt. This may be due to Mo in sulfnitriding layer.

  • PDF

The study of silicon etching using the high density hollow cathode plasma system

  • Yoo, Jin-Soo;Lee, Jun-Hoi;Gangopadhyay, U.;Kim, Kyung-Hae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1038-1041
    • /
    • 2003
  • In the paper, we investigated silicon surface microstructures formed by reactive ion etching in hollow cathode system. Wet anisotropic chemical etching technique use to form random pyramidal structure on <100> silicon wafers usually is not effective in texturing of low-cost multicrystalline silicon wafers because of random orientation nature, but High density hollow cathode plasma system illustrates high deposition rate, better film crystal structure, improved etching characteristics. The etched silicon surface is covered by columnar microstructures with diameters form 50 to 100nm and depth of about 500nm. We used $SF_{6}$ and $O_{2}$ gases in HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}$ $cm^{-3}$ at a discharge current of 20 mA. Silicon etch rate of 1.3 ${\mu}s/min$. was achieved with $SF_{6}/O_{2}$ plasma conditions of total gas pressure=50 mTorr, gas flow rate=40 sccm, and rf power=200 W. Our experimental results can be used in various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this paper we directed our study to the silicon etching properties such as high etching rate, large area uniformity, low power with the high density plasma.

  • PDF