• 제목/요약/키워드: HMM 디코더

검색결과 3건 처리시간 0.011초

화자인식을 위한 관측신뢰도 기반 변형된 HMM 디코더 (Modified HMM Decoder based on Observation Confidence for Speaker Identification)

  • ;민소희;김진영;나승유
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.443-446
    • /
    • 2007
  • 음성신호는 잡음 또는 전송 채널의 특성에 의하여 왜곡되고, 왜곡된 음성은 음성인식 및 화자인식의 성능을 크게 저하시킨다. 이러한 문제점을 극복하기 위해 본 논문에서는 Gaussian mixture model (GMM)에 적용된 신호대잡음비 (SNR)기반 신뢰도 가중 기법[1][2]을 Hidden Markov model(HMM) 디코더에 변형하여 적용하였다. HMM 디코더 변형은 HMM 상태별 관측확률을 논문 [1]에서 제시된 신뢰도로 가중함으로써 이루어졌다. 제안한 방법의 성능을 확인하기 위해 ETRI에서 만든 한국어 화자인식용 휴대폰 음성 DB를 사용하여 문맥종속 화자식별 실험을 하였다. 실험결과 기존 방법에 비해 제안한 방법의 화자인식률이 크게 향상됨을 확인 할 수 있었다.

  • PDF

라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응 (Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition)

  • 정현재;구자현;김회린
    • 말소리와 음성과학
    • /
    • 제12권2호
    • /
    • pp.29-37
    • /
    • 2020
  • 최근 신경망 기반 심층학습 알고리즘의 적용으로 고전적인 Gaussian mixture model based hidden Markov model (GMM-HMM) 음성인식기에 비해 성능이 비약적으로 향상되었다. 또한 심층학습 기법의 장점을 더욱 잘 활용하는 방법으로 언어모델링 및 디코딩 과정을 통합처리 하는 종단간 음성인식 시스템에 대한 연구가 매우 활발히 진행되고 있다. 일반적으로 종단간 음성인식 시스템은 어텐션을 사용한 여러 층의 인코더-디코더 구조로 이루어져 있다. 때문에 종단간 음성인식 시스템이 충분히 좋은 성능을 내기 위해서는 많은 양의 음성과 문자열이 함께 있는 데이터가 필요하다. 음성-문자열 짝 데이터를 구하기 위해서는 사람의 노동력과 시간이 많이 필요하여 종단간 음성인식기를 구축하는 데 있어서 높은 장벽이 되고 있다. 그렇기에 비교적 적은 양의 음성-문자열 짝 데이터를 이용하여 종단간 음성인식기의 성능을 향상하는 선행연구들이 있으나, 음성 단일 데이터나 문자열 단일 데이터 한쪽만을 활용하여 진행된 연구가 대부분이다. 본 연구에서는 음성 또는 문자열 단일 데이터를 함께 이용하여 종단간 음성인식기가 다른 도메인의 말뭉치에서도 좋은 성능을 낼 수 있도록 하는 준교사 학습 방식을 제안했으며, 성격이 다른 도메인에 적응하여 제안된 방식이 효과적으로 동작하는지 확인하였다. 그 결과로 제안된 방식이 타깃 도메인에서 좋은 성능을 보임과 동시에 소스 도메인에서도 크게 열화되지 않는 성능을 보임을 알 수 있었다.

동적 베이스망 기반의 걸음걸이 분석 (Dynamic Bayesian Network-Based Gait Analysis)

  • 김찬영;신봉기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권5호
    • /
    • pp.354-362
    • /
    • 2010
  • 본 연구는 동적 베이스 망을 이용하여, 사람의 보행 동작을 보행 방향과 보행 자세로 분리하여 계층적으로 분석하는 방법을 제안한다. DBN의 일종인 FHMM을 기본 바탕으로 하여, 걸음걸이 동작 특성을 고려하여 순환 고리형 상태 공간 구조로 '보행 동작 디코더'(Gait Motion Decoder, GMD)를 설계한다. 기존 연구에는 보행자의 식별에만 치중을 하고 보행 방향의 변화, 관찰 각도에 제한적이거나 보행 동작에 대한 분석이 없었다. 반면에 본 연구에서는 동작과 자세를 적극적으로 표현하여 임의 방향의 보행, 방향의 변화, 보행 자세까지 인식할 수 있도록 하였다. 실험 결과 동작과 자세의 관점에서 걸음걸이 방향을 분석한 결과 96.5%의 방향 인식률을 기록하였다. 본 연구는 보행 동작을 방향과 보행 자세로 계층적으로 분석하는 최초의 방법 및 시도이며 향후 상황별 휴먼 동작 분석에 크게 활용할 수 있을 것이다.