Dynamic Bayesian Network-Based Gait Analysis

동적 베이스망 기반의 걸음걸이 분석

  • 김찬영 (부경대학교 컴퓨터공학과) ;
  • 신봉기 (부경대학교 IT 융합 응용 공학과)
  • Received : 2010.01.27
  • Accepted : 2010.03.15
  • Published : 2010.05.15

Abstract

This paper proposes a new method for a hierarchical analysis of human gait by dividing the motion into gait direction and gait posture using the tool of dynamic Bayesian network. Based on Factorial HMM (FHMM), which is a type of DBN, we design the Gait Motion Decoder (GMD) in a circular architecture of state space, which fits nicely to human walking behavior. Most previous studies focused on human identification and were limited in certain viewing angles and forwent modeling of the walking action. But this work makes an explicit and separate modeling of pedestrian pose and posture to recognize gait direction and detect orientation change. Experimental results showed 96.5% in pose identification. The work is among the first efforts to analyze gait motions into gait pose and gait posture, and it could be applied to a broad class of human activities in a number of situations.

본 연구는 동적 베이스 망을 이용하여, 사람의 보행 동작을 보행 방향과 보행 자세로 분리하여 계층적으로 분석하는 방법을 제안한다. DBN의 일종인 FHMM을 기본 바탕으로 하여, 걸음걸이 동작 특성을 고려하여 순환 고리형 상태 공간 구조로 '보행 동작 디코더'(Gait Motion Decoder, GMD)를 설계한다. 기존 연구에는 보행자의 식별에만 치중을 하고 보행 방향의 변화, 관찰 각도에 제한적이거나 보행 동작에 대한 분석이 없었다. 반면에 본 연구에서는 동작과 자세를 적극적으로 표현하여 임의 방향의 보행, 방향의 변화, 보행 자세까지 인식할 수 있도록 하였다. 실험 결과 동작과 자세의 관점에서 걸음걸이 방향을 분석한 결과 96.5%의 방향 인식률을 기록하였다. 본 연구는 보행 동작을 방향과 보행 자세로 계층적으로 분석하는 최초의 방법 및 시도이며 향후 상황별 휴먼 동작 분석에 크게 활용할 수 있을 것이다.

Keywords

References

  1. Aggarwal and Q. Cai, "Human motion analysis - a review," Computer Vision and Image Understanding, vol.73, no.3, pp.428-440, 1999. https://doi.org/10.1006/cviu.1998.0744
  2. H.-I. Suk and B.-K. Sin, "HMM-Based Gait Recognition with Human Profiles," in Proc. of Joint Workshop on SSPR 2006 /SPR2006, Hong Kong, China, pp.596-603, 2006.
  3. B.Chakraborty, O. Rudovic, and J. Gonzalez, "View-Invariant Human-Body Detection with Extension to Human Action Recognition using Component-Wise HMM of Body Parts," in 8th IEEE International Conference on Automatic Face and Gesture Recognition, Amsterdam, The Netherlands, September, 2008.
  4. C. Rao, A. Yilmaz, and M. Shah, "View-invariant representation and recognition of actions," International Journal of Computer Vision, vol.50, no.2, pp.203-226, 2002. https://doi.org/10.1023/A:1020350100748
  5. J. Yamato, J. Ohya, and K. Ishii, "Recognizing human action in time sequential images using hidden Markov model," Computer Vision and Image Processing, pp.379-385, 1992.
  6. X. Feng and P. Perona, "Human action recognition by sequence of movelet codewords," in Proceedings of First International Symposium on 3D Data Processing Visualization and Transmission, pp. 717-721, 2002.
  7. T. Mori, Y. Segawa, M. Shimosaka, and T. Sato, "Hierarchical recognition of daily human actions based on continuous hidden Markov models," in Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp.779 -784, 2004.
  8. M. Brand and V. Kettnaker, "Discovery and segmentation of activities in video," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.844-851, 2000. https://doi.org/10.1109/34.868685
  9. J. Sullivan and S. Carlsson, "Recognizing and tracking human action," in Proceedings of European Conference on Computer Vision, pp.629-644, 2002.
  10. A. S. Ogale, A. Karapurkar, and Y. Aloimonos, "View-invariant modeling and recognition of human actions using grammars," in Proc. Workshop Dynamical Vis. ICCV, Beijing, China, pp.115-126, 2005.
  11. S. Park and J.K.Aggarwal, "A hierarchical Bayesian network for event recognition of human actions and interactions," Multimedia Systems, vol.10, pp.164-179, 2004. https://doi.org/10.1007/s00530-004-0148-1
  12. C. Chen, J. Liang, H. Zhao, H. Hu, J. Tian, "Factorial HMM and parallel HMM for gait recognition," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.39, pp.114-123, 2009. https://doi.org/10.1109/TSMCC.2008.2001716
  13. K. Murphy, "Dynamic Bayesian Network: Representation, Inference and Learning," Ph.D. Dissertation, University of California, Berkeley, 2002.
  14. Z. Ghahramani and M.I. Jordan, "Factorial Hidden Markov Models," Machine Learning, vol.29, pp.245-275, 1997. https://doi.org/10.1023/A:1007425814087
  15. L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," in Proc. IEEE, vol.77, no.2, pp.257-286, Feb. 1989.
  16. F. Jensen, "Bayesian Networks and Decision Graphs," Chapter 1, pp.3-34, Springer, 2001.
  17. M. Brand, N. Oliver, and A. Pentland, "Coupled Hidden Markov Models for Complex action Recognition," in Proc. of IEEE International conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp.994-999, June 1997.
  18. A.Dempster, N. Laird, and D. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal statistical Society, vol.39, No.1, pp.1-38, 1977.
  19. http://sourceforge.net/projects/opencvlibrary/
  20. http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html