• 제목/요약/키워드: HMM(Hidden Markov Models)

검색결과 131건 처리시간 0.026초

Statistical Speech Feature Selection for Emotion Recognition

  • Kwon Oh-Wook;Chan Kwokleung;Lee Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.144-151
    • /
    • 2005
  • We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

HMM-Based Automatic Speech Recognition using EMG Signal

  • Lee Ki-Seung
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권3호
    • /
    • pp.101-109
    • /
    • 2006
  • It has been known that there is strong relationship between human voices and the movements of the articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The EMG signals were acquired from three articulatory facial muscles. Preliminary, 10 Korean digits were used as recognition variables. The various feature parameters including filter bank outputs, linear predictive coefficients and cepstrum coefficients were evaluated to find the appropriate parameters for EMG-based speech recognition. The sequence of the EMG signals for each word is modelled by a hidden Markov model (HMM) framework. A continuous word recognition approach was investigated in this work. Hence, the model for each word is obtained by concatenating the subword models and the embedded re-estimation techniques were employed in the training stage. The findings indicate that such a system may have a capacity to recognize speech signals with an accuracy of up to 90%, in case when mel-filter bank output was used as the feature parameters for recognition.

CHMM을 이용한 발매기 명령어의 음성인식에 관한 연구 (A Study on the Speech Recognition for Commands of Ticketing Machine using CHMM)

  • 김범승;김순협
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.285-290
    • /
    • 2009
  • 논문에서는 연속HMM(Continuos Hidden Markov Model)을 이용하여 실시간으로 발매기 명령어(314개 역명)를 인식 할 수 있도록 음성인식 시스템을 구현하였다. 특징 벡터로 39 MFCC를 사용하였으며, 인식률 향상을 위하여 895개의 tied-state 트라이폰 음소 모델을 구성하였다. 시스템 성능 평가 결과 다중 화자 종속 인식률은 99.24%, 다중화자 독립 인식률은 98.02%의 인식률을 나타내었으며, 실제 노이즈가 있는 환경에서 다중 화자 독립 실험의 경우 93.91%의 인식률을 나타내었다.

한국어 숫자음 인식을 위한 이산분포 HMM과 연속분포 HMM의 성능 비교 연구 (A Comparison of Discrete and Continuous Hidden Markov Models for Korean Digit Recognition)

  • 홍형진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.157-160
    • /
    • 1994
  • 본 논문에서는 한국어 숫자음 인식에 대한 이산분포 HMM과 연속분포 HMM의 인식 성능을 비교하였다. 일반적으로 연속분포 HMM은 많은 계산량이 필요하고, 학습시 초기값이 매우 민감하다는 단점이 있지만, 이산분포 HMM의 VQ로 인한 왜곡을 제거함으로써 인식률을 향상시킬 수 있다. 여기서는 성능비교를 위해서 mel-cepstrum의 분석차수, 이산분포 HMM의 codebook 크기, 연속분포 HMM의 miture 개수등에 따른 인식성능을 비교하였다. 실험 결과 이산분포 HMM에서는 mel-cepstrum 벡터가 14차이고, codebook 크기가 64일 때 가장 좋은 성능을 나타냈으며, 연속부포 HMM에서는 mel-cepstrum 벡터가 16차이고 miture가 3개일 때 가장 좋은 결과를 얻을 수 있었다. 특히 학습 데이터의 양이 적은 경우에는 연속분포 HMM이 이산분포 HMM보다 더 좋은 인식률을 나타내었다.

  • PDF

Hidden Markov Model을 이용한 심음분류에 관한 연구 (A Study on Classification of Heart Sounds Using Hidden Markov Models)

  • 김희근;정용주
    • 한국음향학회지
    • /
    • 제25권3호
    • /
    • pp.144-150
    • /
    • 2006
  • 심장병이 있는 환자들을 진료할 때 의사들은 청진기를 이용하여 심음 (heart sound)을 듣고 이를 기준으로 환자의 병의 유무나 질환의 종류에 대한 기초적인 판단을 하게 된다. 하지만, 심음은 환자의 상태나 외부 잡음의 영향에 따라서 신호의 특성이 변하고 또한 정상적인 심음과 질병을 나타내는 심음과의 차이가 비교적 구분하기 어려울 정도로 작기 때문에 숙달된 전문의가 아니면, 진단의 정확도가 떨어질 가능성이 있다. 따라서 신호처리 기법을 이용하여 심음을 분석해서 심음이 정상적인지의 유무를 자동으로 판단할 수 있다면, 진단을 하는 의사들에게 유용한 정보가 될 것이라 생각된다. 본 연구에서는 심음의 질병유무와 질병종류를 자동으로 판단하기 위해서 기존에 많이 사용되었던 artificial neural network (ANN) 대신에 hidden Markov model (HMM)을 사용하는 방법을 제안하였으며, 기초적인 실험결과 상당히 우수한 성능을 보임을 알 수 있었다.

영상감시시스템에서 은닉마코프모델을 이용한 불검출 방법 (Fire detection in video surveillance and monitoring system using Hidden Markov Models)

  • ;김정현;강동중;김민성;이주섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.35-38
    • /
    • 2009
  • The paper presents an effective method to detect fire in video surveillance and monitoring system. The main contribution of this work is that we successfully use the Hidden Markov Models in the process of detecting the fire with a few preprocessing steps. First, the moving pixels detected from image difference, the color values obtained from the fire flames, and their pixels clustering are applied to obtain the image regions labeled as fire candidates; secondly, utilizing massive training data, including fire videos and non-fire videos, creates the Hidden Markov Models of fire and non-fire, which are used to make the final decision that whether the frame of the real-time video has fire or not in both temporal and spatial analysis. Experimental results demonstrate that it is not only robust but also has a very low false alarm rate, furthermore, on the ground that the HMM training which takes up the most time of our whole procedure is off-line calculated, the real-time detection and alarm can be well implemented when compared with the other existing methods.

얼굴인증 방법들의 조명변화에 대한 견인성 연구 (Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes)

  • 고대영;천영하;김진영;이주헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF

Subsequent application of self-organizing map and hidden Markov models infer community states of stream benthic macroinvertebrates

  • Kim, Dong-Hwan;Nguyen, Tuyen Van;Heo, Muyoung;Chon, Tae-Soo
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.95-107
    • /
    • 2015
  • Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate community, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to obtain the transition probabilities between the states and the emission probabilities that show the connection of the states with observable events such as the number of species, the diversity measured by Shannon entropy, and the biological water quality index (BMWP). While the number of species apparently addressed the state of the community, the diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP showed clear characterization of events that correspond to the different states based on the emission probabilities. The environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the ecological structures in stream communities.