Abstract
This paper implemented a Speech Recognition System in order to recognize Commands of Ticketing Machine (314 station-names) at real-time using Continuous Hidden Markov Model. Used 39 MFCC at feature vectors and For the improvement of recognition rate composed 895 tied-state triphone models. System performance valuation result of the multi-speaker-dependent recognition rate and the multi-speaker-independent recognition rate is 99.24% and 98.02% respectively. In the noisy environment the recognition rate is 93.91%.
논문에서는 연속HMM(Continuos Hidden Markov Model)을 이용하여 실시간으로 발매기 명령어(314개 역명)를 인식 할 수 있도록 음성인식 시스템을 구현하였다. 특징 벡터로 39 MFCC를 사용하였으며, 인식률 향상을 위하여 895개의 tied-state 트라이폰 음소 모델을 구성하였다. 시스템 성능 평가 결과 다중 화자 종속 인식률은 99.24%, 다중화자 독립 인식률은 98.02%의 인식률을 나타내었으며, 실제 노이즈가 있는 환경에서 다중 화자 독립 실험의 경우 93.91%의 인식률을 나타내었다.