• Title/Summary/Keyword: HIx solution

검색결과 10건 처리시간 0.02초

열화학적 수소제조 IS 프로세스의 효율향상을 위한 전해-전기투석의 실험적 평가 (Evaluation on the Electro-electrodialysis for hydrogen production by thermochemical water-splitting IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.13-16
    • /
    • 2006
  • Electro-electrodialysis (EED) experiments were carried out for the HI concentration from HIx $(HI-H_2O-I_2)$ solution to improve the Hl decomposition reaction in the thermochemical water-splitting is (iodine-Sulfur) process. EED cell is composed of the collector electrode and electrolyte. Nafion 117 which was cation exchange membrane used as an electrolyte, and the activated carbon cloth used as an electrode. The HI concentration experiment was carried out using the HIx solution and molar ratio of the $I_2$ were varied from 1 to 3 mole. The cell voltages were decreased as temperature increase. And, membrane properties such as transport number of proton and electro-osmosis coefficient were decreased as temperature increase

  • PDF

HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향 (Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution)

  • 김종석;박주식;강경수;정성욱;조원철;김영호;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.

황-요오드 수소 제조 공정에서 HIx 용액을 이용한 분젠 반응의 상 분리 특성 (The Phase Separation Characteristics of Bunsen Reaction with HIx Solution in Sulfur-Iodine Hydrogen Production Process)

  • 김효섭;홍동우;한상진;김영호;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.479-486
    • /
    • 2010
  • In order to confirm the effect of $HI_x$ solution on Bunsen reaction in Sulfur-Iodine thermochemical hydrogen production process, the reaction was investigated using $HI_x$ solution as a reactant. The phase separation characteristics of reaction with $HI_x$ solution were compared with the reaction using $I_2$ and $H_2O$ as reactants. Firstly, saturation points of $I_2$ in $HI_x$ solution at various temperatures were investigated to determine reaction conditions. With increasing temperature, the amounts of unreacted $I_2$ and $H_2O$ in $HI_x$ solution were increased, while impurities (HI in $H_2SO_4$ phase and $H_2SO_4$ in $HI_x$ phase) in each phase were decreased. The volumes of $H_2SO_4$ phase obtained from Bunsen reaction with $HI_x$ solution was relatively less than those obtained from the reaction with $I_2$ and $H_2O$. The difficulty of phase separation in Bunsen reaction using $HI_x$ solution may be due to the insufficient amount of $H_2O$ existed in $HI_x$ phase after reaction. Therefore, we concluded that the supplement amount of $H_2O$ should be calculated on the basis of the moles of HI and $H_2SO_4$ and added to the reaction system for good phase separation.

황-요오드 수소 제조 공정에서 분젠 반응 생성물의 정제 (Purification of Bunsen Reaction Products in Sulfur-Iodine Hydrogen Production Process)

  • 차광서;김영호;강영한;김효섭;박주식;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.158-166
    • /
    • 2010
  • The purification of two liquid phases ($H_2SO_4$ phase and HIx phase) formed from a Bunsen reaction in Sulfur-Iodine (SI) hydrogen production process was investigated in order to operate SI process efficiently. The each synthetic solution for two liquid phases contained impurities was prepared on the basis of a proper composition obtained from Bunsen reaction. The purification of each solution was performed by counter-current flow using a packed column at different temperatures and $N_2$ flow rates. As the results of purification, impurities existed in each phase were decreased with increasing the temperature and the $N_2$ flow rate. In particular, the increase of the $N_2$ flow rate at the lower temperatures was effective to remove impurities by a reverse Bunsen reaction without side reactions. On the whole, it may be concluded that the purification of each phase is accomplished by mixing effects of the stripping, the evaporation, and the reverse Bunsen reaction.

분리막 기술을 이용한 열화학적 수소제조 IS[요오드-황] 프로세스의 개선 (Improvement of the Thermochemical water-splitting IS Process Using the Membrane Technology)

  • 황갑진;김종원;심규성
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.249-258
    • /
    • 2002
  • Thermochemical water-splitting IS(Iodine-Sulfur) process has been investigating for large-scale hydrogen production. For the construction of an efficient process scheme, two kinds of membrane technologies are under investigating to improve the hydrogen producing HI decomposition step. One is a concentration of HI in quasi-azeotropic HIx ($HI-H_2O-I_2$) solution by elecro-electrodialysis. It was confirmed that HI concentrated from the $HI-H_2O-I_2$ solution with a molar ratio of 1:5:1 at $80^{\circ}C$. The other is a membrane reactor to enhance the one-pass conversion of thermal decomposition reaction of gaseous hydrogen iodide (HI). It was found from the simulation study that the conversion of over 0.9 would be attainable using the membrane reactor using the gas permeation properties of the prepared silica hydrogen permselective membrane by chemical vapor deposition (CVD). Design criterion of the membrane reactor was also discussed.

전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축 (Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution)

  • 황갑진;김정근;이상호;최호상
    • 멤브레인
    • /
    • 제17권4호
    • /
    • pp.338-344
    • /
    • 2007
  • HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전기투석을 시판의 양이온교환막(CMB)을 이용하여 요오드의 존재하에 실험을 진행하였다. 수소이온 투과의 선택성을 증가시키기 위해, 막은 전자선 가속기를 이용하여 방사선 처리하였다. 방사선 처리한 막의 막특성(막 저항, 이온교환용량, 함수율)을 측정하였다. 각각의 방사선량에서 처리한 막의 2 $mol/dm^3$의 KCl 용액에서 막저항, 이온교환용량과 함수율은 처리하지 않은 막과 거의 동등의 값을 가졌다. HI몰랄리티가 9.5 $mol/kg-H_2O$인 HI의 전해-전투기투석을 $75^{\circ}C$, 9.6 $A/dm^2$에서 진행하였다. 전자선 가속기에 의해 방사선 처리한 양이온교환막은 처리하지 않은 막과 비교하여 고분자의 가교구조와 함께 수소이온투과의 높은 선택성을 가졌다.

HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구 (Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration)

  • 이상호;홍성대;김정근;황갑진;문일식
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축 (HI concentration by EED for the HI decomposition in IS process)

  • 홍성대;김정근;이상호;최상일;배기광;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

HI 농축에 대한 전기투석 셀의 성능 및 운전한계조건 연구 (A Study on the Performance and Operation Limit of Electrodialysis Cell for HI Concentration)

  • 이병우;정성욱;조원철;강경수;박주식;배기광;김영호;김창희
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.749-758
    • /
    • 2011
  • The present work explores the performance and operation limit of electrodialysis cell for HI concentration in sulfur iodine thermochemical hydrogen production process, For this purpose, the electrodialysis cell was assembled with Nafion 117 as a PEM membrane and two activated carbon papers as the electrodes. HIx solution was prepared with composition of HI: $I_2$: $H_2O$ = 1: 0.5~2.5: 5.2 in molar ratio. The cell and its peripheral apparatus were placed in the specially designed convective oven in order to uniformly maintain the operation temperature. As operation temperature increased, the amount of water transport from anode to cathode increased, thus reducing HI molarity in catholyte. Meanwhile, the current efficiency was constant as about 90 %, irrespective of temperature change. The cell voltage increased with initial $I_2$ mole ratio as well as anolyte to catholyte mole ratio. Moreover the cell voltage overshot took place within 10 h cell operation, which is due to the $I_2$ precipitation inside the cell. From the analysis of $I_2$ mole ratio in the anolyte, it is noted that operation limit (in $I_2$ mole ratio) of the electrodialysis cell, arising from was measured to be 3.2, which is much lower than bulk solubility limit of 4.7.

황-요오드 수소 제조 공정에서 초음파 조사를 이용한 분젠 반응의 특성 (Characteristics of Bunsen Reaction using Ultrasonic Irradiation in Sulfur-iodine Hydrogen Production Process)

  • 김효섭;이동희;이종규;박주식;김영호
    • 공업화학
    • /
    • 제29권1호
    • /
    • pp.56-61
    • /
    • 2018
  • 황-요오드(SI) 공정의 통합 운전을 위한 분젠 반응 단계에서, $I_2$$H_2O$ 반응물들은 $HI_x$ 용액 내 용해된 성분들로써 공급된다. $HI_x$ 용액과 $SO_2$ 공급을 이용하여 분젠 반응이 수행될 때 $HI_x$ 상 내 대부분의 $H_2SO_4$ 생성물이 존재하며, 이에 따라 $HI_x$ 상에 대한 $H_2SO_4$ 상의 부피 비가 매우 낮다. 본 연구에서 우리는 상 분리 성능을 향상시키기 위해 $HI_x$ 용액을 이용한 분젠 반응에 대한 초음파 조사의 효과들을 연구하였다. 분젠 반응과 함께 초음파가 조사될 때 $HI_x$ 상으로부터 $H_2SO_4$ 상으로 이동된 $H_2SO_4$의 양은 최대 58.0 mol%까지 증가하였으며, $H_2SO_4$ 상의 부피 또한 최대 13.1 vol%까지 증가하였다. 특히, 상 분리에 대한 초음파 조사의 효과는 온도, $I_2$$H_2O$ 공급 농도가 감소함에 따라 향상되었다. 초음파 조사는 $HI_x$ 상 내 반응 평형을 미시적으로 이동시킴으로써 추가적인 $H_2O$ 분자들의 형성을 유도하였다. 이로부터 추가적으로 생성된 $H_2O$ 및 분리된 $H_2SO_4$ 분자들이 $H_2SO_4$ 상으로 이동할 수 있는 더 많은 $H_2SO_4{\cdot}xH_2O$ (x = 5-6) 착물들을 형성하였다.