• Title/Summary/Keyword: HIV-1 Long Terminal Repeat

Search Result 6, Processing Time 0.016 seconds

Investigation of functional roles of transcription termination factor-1 (TTF-I) in HIV-1 replication

  • Park, Seong-Hyun;Yu, Kyung-Lee;Jung, Yu-Mi;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.338-343
    • /
    • 2018
  • Transcription termination factor-1 (TTF-I) is an RNA polymerase 1-mediated transcription terminator and consisting of a C-terminal DNA-binding domain, central domain, and N-terminal regulatory domain. This protein binds to a so-called 'Sal box' composed of an 11-base pair motif. The interaction of TTF-I with the 'Sal box' is important for many cellular events, including efficient termination of RNA polymerase-1 activity involved in pre-rRNA synthesis and formation of a chromatin loop. To further understand the role of TTF-I in human immunodeficiency virus (HIV)-I virus production, we generated various TTF-I mutant forms. Through a series of studies of the over-expression of TTF-I and its derivatives along with co-transfection with either proviral DNA or HIV-I long terminal repeat (LTR)-driven reporter vectors, we determined that wild-type TTF-I downregulates HIV-I LTR activity and virus production, while the TTF-I Myb-like domain alone upregulated virus production, suggesting that wild-type TTF-I inhibits virus production and trans-activation of the LTR sequence; the Myb-like domain of TTF-I increased virus production and trans-activated LTR activity.

A Human Immunodeficiency Virus Type 1 (HIV-1) Tat Cofactor Absent in Rodent Cells is a TAR-associated Factor

  • Lee, Im-soon;Shank, Peter R.
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • Background: Although Tat plays a role as a potent transactivator in the viral gene expression from the Human Immunodeficiency Virus type 1 long terminal repeat (HIV-1 LTR), it does not function efficiently in rodent cells implying the absence of a human specific factor essential for Tat-medicated transactivation in rodent cells. In previous experiments, we demonstrated that one of chimeric forms of TAR (transacting responsive element) of HIV-1 LTR compensated the restriction in rodent cells. Methods: To characterize the nature of the compensation, we tested the effects of several upstream binding factors of HIV-1 LTR by simple substitution, and also examined the role of the configuration of the upstream binding factor(s) indirectly by constructing spacing mutants that contained insertions between Sp1 and TATA box on Tat-mediated transactivation. Results: Human Sp1 had no effect whereas its associated factors displayed differential effects in human and rodent cells. In addition, none of the spacing mutants tested overcame the restriction in rodent cells. Rather, when the secondary structure of the chimeric HIV-1 TAR construct was destroyed, the compensation in rodent cells was disappeared. Interestingly, the proper interaction between Sp1 and TATA box binding proteins, which is essential for Tat-dependent transcription, was dispensable in rodent cells. Conclusion: This result suggests that the human-specific Tat cofactor acts to allow Tat to interact effectively in a ribonucleoprotein complex that includes Tat, cellular factors, and TAR RNA, rather than be associated with the HIV-1 LTR upstream DNA binding factors.

Functional Nucleotides of U5 LTR Determining Substrate Specificity of Prototype Foamy Virus Integrase

  • Kang, Seung-Yi;Ahn, Dog-Gn;Lee, Chan;Lee, Yong-Sup;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1044-1049
    • /
    • 2008
  • In order to study functional nucleotides in prototype foamy virus (PFV) DNA on specific recognition by PFV integrase (IN), we designed chimeric U5 long terminal repeat (LTR) DNA substrates by exchanging comparative sequences between human immunodeficiency virus type-1 (HIV-1) and PFV U5 LTRs, and investigated the 3'-end processing reactivity using HIV-1 and PFV INs, respectively. HIV-1 IN recognized the nucleotides present in the fifth and sixth positions at the 3'-end of the substrates more specifically than any other nucleotides in the viral DNA. However, PFV IN recognized the eighth and ninth nucleotides as distinctively as the fifth and sixth nucleotides in the reactions. In addition, none of the nucleotides present in the twelfth, sixteenth, seventeenth, eighteenth, nineteenth, and twentieth positions were not differentially recognized by HIV-1 and PFV INs, respectively. Therefore, our results suggest that the functional nucleotides that are specifically recognized by its own IN in the PFV U5 LTR are different from those in the HIV-1 U5 LTR in aspects of the positions and nucleotide sequences. Furthermore, it is proposed that the functional nucleotides related to the specific recognition by retroviral INs are present inside ten nucleotides from the 3'-end of the U5 LTR.

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.

Expression of Human Immunodeficiency Virus Type 1 Tat Proteins in Escherichia coli and Application to Study Tat Functions

  • Park, Jin-Seu;Lee, Han-Gyu;Lee, Yoon;Kang, Young-Hee;Rhim, Hyang-Shuk;Choi, Soo-Young
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.337-343
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1), transactivator of transcription (Tat), is one of the viral gene products that is essential for HIV-1 replication. The HIV-l Tat protein regulates transcription from an HIV-1 long terminal repeat (LTR) and affects the gene expression of cellular proteins during infection. In order to develop an expression system to overexpress and simply purify HIV-1 Tat proteins, the HIV-1 Tat coding sequences that contain one or two exons were amplified using PCR and cloned into a pET vector, which contains a consecutive stretch of six histidine residues at the amino-terminus. The reconstituted vectors were overexpressed in the E. coli strain and the soluble recombinant proteins were purified to be homogeneity in a single step by $Ni^{+2}-nitrilotriacetic$ acid Sepharose chromatography under nondenaturing conditions. Recombinant HIV-1 Tat proteins were shown to transactivate the HIV-1 LTR promoter in a dose-dependent manner when introduced into mammalian cells. In addition, treatment of human endothelial cells with purified Tat proteins resulted in a significant increase in the level of vascular cell adhesion molecule-1 (VCAM-1) expression. These results indicate that the recombinant HIV-1 Tat proteins are active in transactivating viral and cellular promoters. The expression and purification system described in this study will facilitate in characterizing the biological functions of the Tat proteins.

  • PDF

Expression of the Functional Recombinant Interleukin-16 in E. coli and Mammalian Cell Lines

  • Kim, Seon-Young;Lee, Chang-Hun;Kim, Kyung-Joo;Kim, Yeon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.234-241
    • /
    • 2001
  • The C-terminal 393 bp region of the human interleukin-16 (IL-16) gene was cloned and expressed in E. coli along with mammalian cell lines. Recombinant IL-16 expressed from E. coli was 22 kDa on SDS-PAGE and showed 260% of chemoattractant activity at a concentration of $0.1\;{\mu}g/ml$. HeLa, COS, and Neuro-2a cells were transduced by recombinant retrovirus vector pLNC/IL-16/IRES/TK and the intracellular and secreted amounts of IL-16 produced by HeLa/IL-16/TK, COS/IL-16/TK, and Neuro-2a/IL-16/TK cells were determined by enzyme-linked immunosorbent assay (ELISA). HeLa/IL-16/TK $(1{\times}10^5)$ and COS/IL-16/TK $(1{\times}10^5)$ cells secreted 36.1 and 13.3 ng of IL-16 for 48 h, respectively. Forty-nine ng and 86.4 ng of IL-16 remained in the cell lysates of HeLa/IL-16/TK and COS/IL-16/TK. Intracellular and secreted amounts of IL-16 from Neuro-2a/IL-16/TK $(5{\times}10^5)$ cells during 24 h cultivation were 50 ng and 3.3 ng, respectively. Also, HeLa and COS cells wee stably transfected with mammalian expression vector pCRIII/IL-16. Both culture media and cell lysates prepared from HeLa/IL-16 cells and COS/IL-16 cells showed chemoattractant activity ranging from 190% to 460% as compared to the control experiment. Expression of the herpes simplex virus thymidine kinase (HSV0tk) gene in pLNC/IL-16/ IRES/TK bicistronic retroviral expression vector was verified by performing a genciclovir (GCV) sensitivity assay. Finally, IL-16 repressed Tat-transactivated human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR) promoter activity.

  • PDF