• Title/Summary/Keyword: HIPPO

Search Result 56, Processing Time 0.027 seconds

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.

Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation

  • Kim, Wantae;Khan, Sanjoy Kumar;Yang, Yingzi
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.1-2
    • /
    • 2017
  • Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocytes. By rigorous genetic approaches, we identified an interacting network of the Hippo, Wnt/${\beta}$-catenin and Notch signaling pathways that control organ size and HCC development. We found that in hepatocytes, the loss of Mst1/2 leads to the activation of Notch signaling, which forms a positive feedback loop with Yap/Taz (transcription factors controlled by Mst1/2). This positive feedback loop results in severe liver enlargement and rapid HCC formation. Blocking the Yap/Taz-Notch positive feedback loop by Notch inhibition in vivo significantly reduced the Yap/Taz activities, hepatocyte proliferation and tumor formation. Furthermore, we uncovered a surprising inhibitory role of Wnt/${\beta}$-catenin signaling to Yap/Taz activities, which are important in tumor initiation. Genetic removal of ${\beta}$-catenin in the liver of the Mst1/2 mutants significantly accelerates tumoriogenesis. Therefore, Wnt/${\beta}$-catenin signaling, known for its oncogenic property, exerts an unexpected function in restricting Yap/Taz and Notch activities in HCC initiation. The molecular interplay between the three signaling pathways identified in our study provides new insights in developing novel therapeutic strategies to treat liver tumors.

Osteoporotic bone phenotype in Mats1/2 double-mutant mice (Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구)

  • Oh, Juhwan;Choi, YunJeong;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Effects of the Hippo Signaling Pathway in Human Gastric Cancer

  • Zhou, Guang-Xi;Li, Xiao-Yu;Zhang, Qi;Zhao, Kun;Zhang, Cui-Ping;Xue, Chang-Hu;Yang, Kun;Tian, Zi-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5199-5205
    • /
    • 2013
  • Background/Aim: The Hippo signaling pathway is a newly discovered and conserved signaling cascade, which regulates organ size control by governing cell proliferation and apoptosis. This study aimed to investigate its effects in human gastric cancer. Methods: Tumor tissues (n=60), adjacent non-tumor tissues (n=60) and normal tissues (n=60) were obtained from the same patients with primary gastric cancer (GC). In addition, 70 samples of chronic atrophic gastritis (CAG) tissues were obtained from patients with intestinal metaplasia (IM) by endoscopic biopsy. Hippo signaling molecules, including Mst1, Lats1, YAP1, TAZ, TEAD1, Oct4 and CDX2, were determined by quantitative polymerase chain reaction (qPCR). Protein expression of Mst1, Lats1, YAP1, TEAD1 and CDX2 was assessed by immunohistochemistry and Western blotting. Results: Mst1, Lats1 and Oct4 mRNA expression showed an increasing tendency from GC tissues to normal gastric tissues, while the mRNA expression of YAP1, TAZ and TEAD1 was up-regulated (all P<0.01). Mst1 and Lats1 protein expression presented a similar trend with their mRNA expression. In addition, YAP1 and TEAD1 protein expression in GC was significantly higher than in the other groups (all P<0.01). CDX2 mRNA and protein expression in the CAG group were higher than in the other groups (all P<0.01). In GC, mRNA expression of Mst1, Lats1, Oct4, YAP1, TAZ, TEAD1 and CDX2 had a close correlation with lymphatic metastasis and tumor TNM stage (all P<0.01). Furthermore, protein expression of Mst1, Lats1, YAP1, TAZ, TEAD1 and CDX2 had a close correlation between each other (P<0.05). Conclusion: The Hippo signaling pathway is involved in the development, progression and metastasis of human gastric cancer. Therefore, manipulation of Hippo signaling molecules may be a potential therapeutic strategy for gastric cancer.

Pig large tumor suppressor 2 (Lats2), a novel gene that may regulate the fat reduction in adipocyte

  • Liu, Qiuyue;Gu, Xiaorong;Zhao, Yiqiang;Zhang, Jin;Zhao, Yaofeng;Meng, Qingyong;Xu, Guoheng;Hu, Xiaoxiang;Li, Ning
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Clenbuterol, a $\beta_2$-adrenoceptor agonist, has been proven to be a powerful repartition agent that can decrease fat deposition. Based on results from our previous cDNA microarray experiment of pig clenbuterol administration, a novel up-regulated EST was full-length cloned (4859 bp encoding 1041 amino acids) and found to be the pig homolog of large tumor suppressor 2 (Lats2). We mapped pig Lats2 to chromosome 11p13-14 by using FISH, and western blotting demonstrated that pig Lats2 protein was most abundant in adipose. In Drosophila, Lats2 ortholog was reported as a key component of the Hippo pathway which regulates cell differentiation and growth. Here, we show that pig Lats2 exhibit inverted expression to YAP1, another member of the Hippo pathway which positively regulates cell growth and proliferation, during the differentiation of 3T3-L1 preadipocytes. Our results suggested that Lats2 may involve in Hippo pathway regulating the fat reduction by inhibiting adipocyte differentiation and growth.

Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats

  • Qi Yang;Ting Yang;Xing Liu;Shengquan Liu;Wei Liu;Liangui Nie;Chun Chu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.

Performance Evaluation of Early Streamer Emission Lightning Air Terminal

  • Choi, Sang-Won;Her, Yong
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2006
  • Studies have claimed that ESE (Early Streamer Emission) air terminals offer a vastly increased zone of protection over that of traditional lightning rods (Franklin rods) by causing the emission of an upward streamer/leader: The upward streamer/leader will propagate towards the tip of the downward leader at an early stage in the attachment process.. This paper shows the results of a performance evaluation test of a particular type of the ESE air terminal (called "ElecHippo") with a simple rod tested at the Korea Electrotechnology Research Institute (KERI). The corona emission current of the ElecHippo made by Yong-Jin Enterprise Corp. has also been measured at the Occupational Safety & Health Research Institute (OSHRI). The results show that the ElecHippo meets the French standard of NFC 17-102-1995. The results also verify the ESE performance by measuring the ion emission current generated in the discharge electrode gap as a function of the capacitance and inductance of the equipped devices. Finally, we propose a new method for grounding the system to reduce the lightning damage by combining the ESE air terminal, the early discharge earth plate, the lightning strike recorder and the surge protection device.

WWC1 and NF2 Prevent the Development of Intrahepatic Cholangiocarcinoma by Regulating YAP/TAZ Activity through LATS in Mice

  • Park, Jaeoh;Kim, Jeong Sik;Nahm, Ji Hae;Kim, Sang-Kyum;Lee, Da-Hye;Lim, Dae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.491-499
    • /
    • 2020
  • Hippo signaling acts as a tumor suppressor pathway by inhibiting the proliferation of adult stem cells and progenitor cells in various organs. Liver-specific deletion of Hippo pathway components in mice induces liver cancer development through activation of the transcriptional coactivators, YAP and TAZ, which exhibit nuclear enrichment and are activated in numerous types of cancer. The upstream-most regulators of Warts, the Drosophila ortholog of mammalian LATS1/2, are Kibra, Expanded, and Merlin. However, the roles of the corresponding mammalian orthologs, WWC1, FRMD6 and NF2, in the regulation of LATS1/2 activity and liver tumorigenesis in vivo are not fully understood. Here, we show that deletion of both Wwc1 and Nf2 in the liver accelerates intrahepatic cholangiocarcinoma (iCCA) development through activation of YAP/TAZ. Additionally, biliary epithelial cell-specific deletion of both Lats1 and Lats2 using a Sox9-CreERT2 system resulted in iCCA development through hyperactivation of YAP/TAZ. These findings suggest that WWC1 and NF2 cooperate to promote suppression of cholangiocarcinoma development by inhibiting the oncogenic activity of YAP/TAZ via LATS1/2.