• Title/Summary/Keyword: HIP ANGLE

Search Result 435, Processing Time 0.023 seconds

Extracting 3D Geometry Parameters of Hip Joint for Designing a Custom-Made Hip Implant (맞춤형 인공관절 설계를 위한 인체 고관절의 3차원 형상 정보 추출)

  • Seo, Jeong-Woo;Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.200-208
    • /
    • 2008
  • Total Hip Replacement(THR) is a surgical procedure that replaces a diseased hip joint with a prosthesis. A plastic or metal cup forms the socket, and the head of the femur is replaced by a metal ball on a stem placed inside the femur. Due to the various types and shapes of human hip joint of every individual, a selected commercial implant sometimes may not be the best-fit to a patient, or it cannot be applied because of its discrepancy. Hence extracting geometry parameters of hip joint is one of the most crucial processes in designing custom-made implants. This paper describes the framework of a methodology to extract the geometric parameters of the hip joint. The parameters include anatomical axis, femoral head, head offset length, femoral neck, neck shaft angle, anteversion, acetabulum, and canal flare index. The proposed system automatically recommends the size and shape of a custom-made hip implant with respect to the patient's individual anatomy from 3D models of hip structures. The proposed procedure creating these custom-made implants with some typical examples is precisely presented and discussed in this paper.

Treatment of Reverse Oblique Trochanteric Fracture with Compression Hip Screw (대퇴골 전자부 역사상 골절의 압박고 나사를 이용한 치료)

  • Kim, Dong-Hui;Lee, Sang-Hong;Ha, Sang-Ho;You, Jae-Won
    • Journal of Trauma and Injury
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Purpose: To investigate the results of treatment of reverse oblique trochanteric fractures with compression hip screw. Methods: We reviewed the results of 12 cases of reverse oblique trochanteric fracture treated with compression hip screw from January 2000 to December 2006 which could be followed up for more than 1 year. The mean follow up period was 26 months (15~40). The mean age was 48 years old. Injury mechanism was composed of 6 cases of traffic accident and 6 cases of fall down. 8 persons were man. We investigated the union time, degree of neck-shaft angle change, amount of sliding of compression hip screw, complications, functional and clinical results. Results: 10 cases were united and the mean union time were 5 months (3~8). The mean neck-shaft angle change was 3.5 degrees (0~12). The amount of sliding of compression hip screw was 8.9 mm (2~24). There were six coxa vara, six leg due to coxa vara shortening, two nonunion, and one superficial infection. Unsatisfactory results of Jensen's social function score and Parker and Palmer's mobility score were studied. Conclusion: The results of treatment of reverse oblique trochanteric fractures with compression hip screw were relatively unsatisfied.

A Study on Gait Imbalance Evaluation System based on Two-axis Angle using Encoder (인코더를 이용한 2축 각도 기반 보행 불균형 평가 시스템 연구)

  • Shim, Hyeon-min;Kim, Yoohyun;Cho, Woo-Hyeong;Kwon, Jangwoo;Lee, Sangmin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.401-406
    • /
    • 2015
  • In this study, the gait imbalance evaluation algorithm based on two axes angle using encoder is proposed. This experiment was carried out to experiment with a healthy adult male to 10 people. The device is attached to the hip and knee joint in order to measure the angle during the gait. Normal and imbalance gait angle data were measured using an encoder attached to the hip and knee joints. Also, in order to verify the reliability of estimation of asymmetrical gait using hip and knee angle, it was compared with the result of asymmetrical gait estimation using foot pressure. SI (Symmetry Index) was used as an index for determining the gait imbalance. As a result, normal gait and 1.5cm imbalance gait were evaluation as normal gait through SI using an encoder. And imbalance gait of 3cm, 4cm, and 6cm were judge by imbalance gait. Whereas all gait experiments except normal gait were evaluation as imbalance gait through SI using the pressure. It was possible to determine both the normal gait and imbalance gait through measurement for the angle and the pressure.

A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip (둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안)

  • Chang, Sung-Ho;Baek, Ji-Hoon;Lee, Jung-Eon;Mirazamjon, Nematov;Kang, Seok-Wan;Lee, Wang-Bum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

Treatment of Hip Microinstability with Arthroscopic Capsular Plication: A Retrospective Case Series

  • Tatiana Charles;Marc Jayankura;Frederic Laude
    • Hip & pelvis
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Purpose: Hip microinstability is defined as hip pain with a snapping and/or blocking sensation accompanied by fine anatomical anomalies. Arthroscopic capsular plication has been proposed as a treatment modality for patients without major anatomic anomalies and after failure of properly administered conservative treatment. The purpose of this study was to determine the efficacy of this procedure and to evaluate potential predictors of poor outcome. Materials and Methods: A review of 26 capsular plications in 25 patients was conducted. The mean postoperative follow-up period for the remaining patients was 29 months. Analysis of data included demographic, radiological, and interventional data. Calculation of pre- and postoperative WOMAC (Western Ontario and McMaster Universities Osteoarthritis) index was performed. Pre- and postoperative sports activities and satisfaction were also documented. A P<0.05 was considered significant. Results: No major complications were identified in this series. The mean pre- and postoperative WOMAC scores were 62.6 and 24.2, respectively. The WOMAC index showed statistically significant postoperative improvement (P=0.0009). The mean satisfaction rate was 7.7/10. Four patients with persistent pain underwent a periacetabular osteotomy. A lateral center edge angle ≤21° was detected in all hips at presentation. We were not able to demonstrate any difference in postoperative evolution with regard to the presence of hip dysplasia (P>0.05), probably because the sample size was too small. Conclusion: Capsular plication can result in significant clinical and functional improvement in carefully selected cases of hip microinstability.

Biomechanical Analysis of Injury Factors in the Run UP and Jump Phases of the Jetѐ (발레 Jetė 동작의 도움닫기와 점프구간에서 상해 발생 요인에 대한 생체역학적 분석)

  • Lee, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.295-304
    • /
    • 2012
  • This study, through biomechanical analysis, conducts a risk assessment of injury occurrence in ballet dancers while they perform running and jumping movements. The participants were nine female collegiate students majoring in ballet(age: $20.89{\pm}1.17years$; height: $160.89{\pm}7.01cm$; mass: $48.89{\pm}3.26$). Descriptive data were expressed as $mean{\pm}standard$ deviation(SD) for all variables. An independent t-test was conducted to determine how the following variables differed: duration time, position of the center of gravity, angle of the hip, torque of the hip, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the jump time was two times longer than the run time in the duration time. The jump length was also longer than the run. The angle of the hip and the torque at the hip were higher in the right. The vastus medialis muscle was most frequently used. These findings demonstrate that participants' jumps may require more biomechanical variables for performance of better and more correct $jet{\acute{e}}$.

The Kinematical Analysis of Parallel Bars Double Piked Landing Motion (평행봉 double piked 내리기 동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2010
  • This study examined the double piked dismount among the landing techniques of parallel bars based on three-dimensional motion analysis. Four male national gymnasts were the subjects. This study was performed to provide quantitative data highlighting players strengths and weaknesses to enable more stable landing technique. The variables analyzed were the position and velocity of center of gravity(CG) and angles of shoulder joints, hip joints, and trunk. The results are as follows: S1 secured the height of flight with fast vertical rise. After the easy spin in the air, he conducted a stable landing maintaining a proper hip joints angle. S2, S3, and S4, however, began the backward somersault already before leaving the bars, so they moved backward greatly making it more difficult to achieve a higher flight path. As a result, they couldn't control the velocity of their backward movement at landing. For a stable landing, they have to maintain the negative shoulder angle when rising, minimize both antero-posterioror side-to-side movements by doing a strong tap using hip joints, to secure the height of flight before the somersault. Results also show that at the descent, they should conduct rapid spinning by increasing their shoulder and hip joints to the maximum while controlling their velocity.

The Effects of Fibular Repositioning Taping on Joint Angle and Joint Stiffness of the Lower Extremity in Sagittal Plane during a Drop Landing (낙하 착지 시 FRT가 하지의 관절의 시상각과 강직도에 미치는 효과)

  • Jun, Hyung-pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.276-282
    • /
    • 2021
  • Objective: To investigate effects of Fibular Repositioning Taping (FRT) on lower extremity joint stiffness and angle during drop-landing. Method: Twenty-eight participants (14 healthy, 14 with chronic ankle instability [CAI]) performed drop-landings from a 60 cm box; three were performed prior to tape application and three were performed post-FRT. Three-dimensional kinematic and kinetic data were collected using an infrared optical camera system (Vicon Motion Systems Ltd. Oxford, UK) and force-plate (AMTI, Watertown, MA). Joint stiffness and sagittal angle of the ankle, knee, and hip were analyzed. Results: The hip [Healthy: p<.05; M ± SD: 29.43 ± 11.27 (pre), 33.04 ± 12.03 (post); CAI: p<.05; M ± SD: 31.45 ± 9.70 (pre), 32.29 ± 9.85 (post)] and knee [Healthy: p<.05; M ± SD: 53.44 ± 8.09 (pre), 55.13 ± 8.36 (post); CAI: p<.05; M ± SD: 53.12 ± 8.35 (pre), 55.55 ± 9.81 (post)] joints demonstrated significant increases in sagittal angle after FRT. A significant decrease in joint angle was found at the ankle [Healthy: p<.05; M ± SD: 56.10 ± 3.71 (pre), 54.09 ± 4.31 (post); CAI: p<.05; M ± SD: 52.80 ± 6.04 (pre), 49.86 ± 10.08 (post)]. A significant decrease in hip [Healthy: p<.05; M ± SD: 1549.16 ± 517.53 (pre), 1272.48 ± 646.73 (post); CAI: p<.05; M ± SD: 1300.42 ± 595.55 (pre), 1158.27 ± 550.58 (post)] and knee [Healthy: p<.05; M ± SD: 270.12 ± 54.07 (pre), 239.13 ± 64.70 (post); CAI: p<.05; M ± SD: 241.58 ± 93.48 (pre), 214.63 ± 101.00 (post)] joint stiffness was found post-FRT application, while no difference was found at the ankle [Healthy: p>.05; M ± SD: 57.29 ± 17.04 (pre), 59.37 ± 18.30 (post); CAI: p>.05; M ± SD: 69.15 ± 17.63 (pre), 77.24 ± 35.05 (post)]. Conclusion FRT application decreased joint angle at the ankle without altering ankle joint stiffness. In contrast, decreased joint stiffness and increased joint angle was found at the hip and knee following FRT. Thus, participants utilize an altered shock absorption mechanism during drop-landings following FRT. When compared to previous research, the joint kinematics and stiffness of the lower extremity appear to be different following FRT versus traditional ankle taping.

Relationship between Spinopelvic Parameters and Hip Function in Patients with Femoroacetabular Impingement at Diagnosis: A Cross-Sectional Study

  • Bernardo Aguilera-Bohorquez;Pablo Corea;Cristina Siguenza;Jochen Gerstner-Saucedo;Alvaro Carvajal;Erika Cantor
    • Hip & pelvis
    • /
    • v.35 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Purpose: The aim of this study was to determine correlation between the spinopelvic parameters in sitting and standing positions (sacral slope [SS], lumbar lordosis [LL], spinopelvic tilt [SPT], pelvic incidence [PI], and pelvic femoral angle [PFA]), with hip function assessed using the modified Harris hip scores (mHHs) in patients with symptomatic femoroacetabular impingement (FAI) at diagnosis. Materials and Methods: A retrospective study of 52 patients diagnosed with symptomatic FAI was conducted. Evaluation of the spinopelvic complex in terms of SS, LL, SPT, PI and PFA was performed using lateral radiographs of the pelvis and lumbosacral spine in standing and sitting positions. Assessment of hip function at diagnosis was performed using the mHHs. Calculation of spinopelvic mobility was based on the difference (Δ) between measurements performed in standing and sitting position. Results: The median time of pain evolution was 11 months (interquartile range [IQR], 5-24 months) with a median mHHs of 66.0 points (IQR, 46.0-73.0) at diagnosis. The mean change of LL, SS, SPT, and PFA was 20.9±11.2°, 14.2±8.6°, 15.5±9.0°, and 70.7±9.5°, respectively. No statistically significant correlation was observed between spinopelvic parameters and the mHHs (P>0.05). Conclusion: Radiological parameters of the spinopelvic complex did not show correlation with hip function at the time of diagnosis in patients with symptomatic FAI. Conduct of further studies will be required in the effort to understand the effect of the spinopelvic complex and its compensatory mechanics, primarily between the hip and spine, in patients with FAI before and after hip arthroscopy.

The Effects of Hip Abduction angles on Abdominal Muscle Activity During Leg Raising (다리들기 시 엉덩관절 벌림 각도가 배근육의 근활성도에 미치는 영향)

  • Park, Min-Chull
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.165-171
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the change of abdominal muscle activation during unilateral leg raising in supine position among three hip abduction angles($0^{\circ}$, $15^{\circ}$, $30^{\circ}$). Methods : Twenty eight able-body volunteers who had no medical history of low back and hip joint were recruited for this study. Abdominal muscle activity was recorded using surface EMG from both sides of the rectus abdominis, internal/external oblique muscle during leg raising in each position. Results : The muscle activations induced under the three different positions were compared and results showed that there was significant difference only in the right external oblique muscle activation. Conclusion : This study suggest that leg raising of different hip abduction angles without trunk control has little influence on abdominal muscle co-activation.