• Title/Summary/Keyword: HF Etching

Search Result 215, Processing Time 0.025 seconds

The growth and characteristics $K_3$$Li_2$$Nb_5$$O_{15}$ of single crystals ($K_3$$Li_2$$Nb_5$$O_{15}$ 단결정의 성장과 특성에 관한 연구)

  • 김진수;김정남;김태훈;노지현;진병문
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1999
  • The potassium lithium niobate $K_3$$Li_2$$Nb_5$$O_{15}$ single crystals were growing in $K_x$$Li_{1-x}$$NbO_3$ (x = 0.4~0.6) chemical formular by the Czorchralski method. Crystal growth is studied in two orientations with growth along a-axis and c-axis. We have subjected this crystal to x-ray diffraction studies and found that they are single-crystalline and belong to tetragonal system with the lattice parameters a = b = 12.577 $\AA$ and c = 3.997$\AA$. The temperature dependence of dielectric constant was measured in the region of the phase transition. Curie temperature and diffuseness of phase transition are influenced by composition concentration. The composition and cation distribution of ferroelectric TB-type niobate crystals has a strong influence on the ferroelectric properties. Growth condition, optical transmittance, etching pattern and dielectric properties are presented and discussed.

  • PDF

A study on improving the surface morphology of recycled wafer forsolar cells using micro_blaster (Micro blaster를 이용한 태양전지용 재생웨이퍼의 표면 개선에 관한 연구)

  • Lee, Youn-Ho;Jo, Jun-Hwan;Kim, Sang-Won;Kong, Dae-Young;Seo, Chang-Taeg;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Recently, recycling method of waste wafer has been an area of solar cell to cut costs. Micro_blasting is one of the promising candidates for recycling of waste wafer due to their extremely simple and cost-effective process. In this paper, we attempt to explore the effect of micro_blasting and DRE(damage removal etching) process for solar cell. The optimal process conditions of micro_blasting are as follows: $10{\mu}m$ sized $Al_2O_3$ powder, jetting pressure of 400 kPa, and scan_speed of 30 cm/s. And the particles formed on micro_blasted wafer were removed by DRE precess which was performed by using HNA(HF/$HNO_3$/$CH_3COOH$) and TMAH(tetramethyl ammonium hydroxide). Structural analysis was done using a-step and the XRD patterns.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Comparison of removal torque of dual-acid etched and single-acid etched implants in rabbit tibias (단일, 이중 산처리 임플란트의 회전제거력 비교)

  • Kim, Jong-Jin;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • Purpose: Chemically strong-acids (HF and $HCl/H_2SO_4$) dual etching implant surfaces have higher strengths of osseointegration than machined implant surfaces. However, the dual acid treatment deteriorates the physical properties of the titanium by weakening the fatigue resistance of the implant and causing microcracks. The removal torque comparison between the dual-acid etched (hydrochloric acid, sulfuric acid, HS) and single-acid etched implants (hydrochloric acid, H) could reveal the efficiency of implant surface acid treatment. Materials and methods: Nine $3.75{\times}4mm$ dual-acid etched SLA implants and nine single-acid etched SLA implants were inserted into New Zealand rabbit tibias. After 10 days, removal torque, roughness, and wetting angle were measured. Results: Mean removal torque values were as follows: Mean removal torque were 9.94 Ncm for HS group and 9.96 Ncm for H group (P=.995). Mean surface roughness value were $0.93{\mu}m$ for HS group and $0.84{\mu}m$ for H group (P=.170). Root mean square roughness (RSq) values were $1.21{\mu}m$ for HS group and $1.08{\mu}m$ for H group (P=.294), and mean wetting angle values were $99^{\circ}$ for HS group and $98^{\circ}$ for H group (P=.829). Statistical analysis showed no significant difference between the removal torques, roughness, or wetting angles of the two groups. Conclusion: In this experiment, we found no significant difference in removal torque, roughness, or wetting angle between dual-acid etched and single-acid etched implants.