• Title/Summary/Keyword: HEV (hybrid electric vehicle)

Search Result 146, Processing Time 0.027 seconds

A review on the recovery of the lithium carbonate powders from lithium-containing substances (리튬 함유 물질로부터 탄산리튬 회수에 대한 고찰)

  • Kim, Dae-Weon;Park, Jae Ryang;Ahn, Nak-Kyoon;Choi, Gwang-Mook;Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.91-106
    • /
    • 2019
  • The demand for lithium has increased sharply due to the explosive increase in lithium secondary batteries for environment-friendly vehicles (EV: Electric Vehicle, HEV: Hybrid Electric Vehicle, PHEV: Plug-in Hybrid Electric Vehicle). Traditionally, lithium has been produced mainly from lithium-containing minerals and brine, and recently it also has been recovered along with other valuable metals by recycling cathode materials of lithium secondary batteries. In this study, we comprehensively reviewed various recovering precesses of lithium from lithium-containing substances.

Characteristics of Fuel Economy and Greenhouse Gases according to Driving Mode Conditons of Hybrid Electric Vehicles (HEV 주행모드에 따른 연비·온실가스 특성)

  • Kang, Eunjeong;Kwon, Seokjoo;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • The purpose of present study is to analysis the Characteristics of fuel economy and Green house gases due to the driving mode conditions of The hybrid electric vehicle(HEV). HEVs are divided into mild and power types according to the their functions. mild type HEVs are inexpensive because they do not need to implement a pure electric mode. Power type HEVs are more expensive but has also better fuel efficiency. In the present paper, the test results for the gasoline vehicle using FTP-75 mode and HWFET are present.

Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation (최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

The Scheme for Efficient Driving of Engine/Generator-Battery in Series HEV (직렬형 HEV의 엔진/발전기-배터리 연계운전 방안)

  • 박영수;허민호;안재영;강신영;김광헌
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.423-426
    • /
    • 1999
  • This paper describes a driving scheme of the series hybrid electric vehicle that we have developed. Both series HEV and parallel HEV are well known. We chose series HEV because it provides good energy efficiency in urban driving and operates in all-electric mode in performance. And engine-Generator is driven at constant speed with constant load to maintain the low emission. And the battery supplies power during high-load and receive energy during low-load

  • PDF

EXPLORING THE FUEL ECONOMY POTENTIAL OF ISG HYBRID ELECTRIC VEHICLES THROUGH DYNAMIC PROGRAMMING

  • Ao, G.Q.;Qiang, J.X.;Zhong, H.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.781-790
    • /
    • 2007
  • Hybrid electric vehicles(HEV) combined with more than one power sources have great potential to improve fuel economy and reduce pollutant emissions. The Integrated Starter Generator(ISG) HEV researched in this paper is a two energy sources vehicle, with a conventional internal combustion engine(ICE) and an energy storage system(batteries). In order to investigate the potential of diesel engine hybrid electric vehicles in fuel economy improvement and emissions reduction, a Dynamic Programming(DP) based supervisory controller is developed to allocate the power requirement between ICE and batteries with the objective of minimizing a weighted cost function over given drive cycles. A fuel-economy-only case and a fuel & emissions case can be achieved by changing specific weighting factors. The simulation results of the fuel-economy-only case show that there is a 45.1% fuel saving potential for this ISG HEV compared to a conventional transit bus. The test results present a 39.6% improvement in fuel economy which validates the simulation results. Compared to the fuel-economy-only case, the fuel & emissions case further reduces the pollutant emissions at a cost of 3.2% and 4.5% of fuel consumption with respect to the simulation and test result respectively.

Comparison of the Fuel Economy of Series and Parallel Hybrid Bus System Using Dynamic Programming (동적 계획법을 이용한 직렬형 및 병렬형 하이브리드 버스 시스템 연비 비교)

  • Jeong, Jongryeol;Lee, Daeheung;Shin, Changwoo;Jeong, Daebong;Min, Kyoungdoug;Cha, Suk Won;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • There are lots of studies about hybrid electric vehicles (HEVs) because of the global warming and energy problems. Series and parallel HEVs are the common types of many developing hybrid vehicle types. Series HEV uses engine only as the generator for the battery but parallel HEV utilizes engine for driving and generating of the vehicle. In this paper, backward simulations based on dynamic programming were conducted for the fuel economy analysis of two different types of hybrid transit buses depending on driving cycles. It is shown that there is a relation between the type of HEV and the characteristics of driving cycles. Regarding the aggressiveness, the series hybrid bus is more efficient than the parallel system on highly aggressive driving cycle. On the other hand, the parallel hybrid bus is more efficient than the series system on low aggressive driving cycle. Based on this results of the paper, it is expected to choose more efficient type of the hybrid buses according to the driving cycle.

Vehicle Stability Control for a 4WD HEV using Regenerative Braking and Electronic Brake force Distribution (회생제동과 EBD를 이용한 4WD HEV의 차량 안정성 제어)

  • Kim Donghyun;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2005
  • A vehicle stability control logic for 4WD hybrid electric vehicle is proposed using the regenerative braking of the rear motor and electronic brake force distribution module. Performance of the stability control logic is evaluated for J-turn and single lane change. It is found from the simulation results that the regenerative braking at rear motor is able to provide improved stability compared with the vehicle performance without my stability control. Additional improvement can be achieved by applying the regenerative braking plus electronic brake farce distribution control. It is expected that the regenerative braking offers additional improvement of the fuel economy as well as the vehicle stability control.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION-PART II: CONTROL STRATEGY

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.785-793
    • /
    • 2006
  • The topic of this study is the control strategy of a mild hybrid electric vehicle (HEV) equipped with a continuously variable transmission (CVT). A brief powertrain and vehicle configuration is introduced followed by the control strategy of the HEV with emphasis on two key parts. One of them is an ideal operating surface (IOS) that operates the CVT powertrain optimally from the viewpoint of the tank-to-wheel efficiency. The other is a charge sustaining energy management to maintain the battery state of charge (SOC) within an appropriate level. The fuel economy simulation results of the HEV over standard driving cycles were compared with those of the baseline vehicle. Depending on the driving cycle, 1.3-20% fuel saving potential is predicted by the mild hybridisation using an integrated starter alternator (ISA). The detailed energy flow analysis shows that the majority of the improvement comes from the idle stop function and the benefits for electrical accessories. Additionally, the differences between the initial and the final SOC are in the range $-1.0{\sim}+3.8%$ in the examined cycle.

Long-term Driving Data Analysis of Hybrid Electric Vehicle

  • Woo, Ji-Young;Yang, In-Beom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.63-70
    • /
    • 2018
  • In this work, we analyze the relationship between the accumulated mileage of hybrid electric vehicle(HEV) and the data provided from vehicle parts. Data were collected while traveling over 70,000 Km in various paths. The data collected in seconds are aggregated for 10 minutes and characterized in terms of centrality, variability, normality, and so on. We examined whether the statistical properties of vehicle parts are different for each cumulative mileage interval of a hybrid car. When the cumulative mileage interval is categorized into =< 30,000, <= 50,000, and >50,000, the statistical properties are classified by the mileage interval as 82.3% accuracy. This indicates that if the data of the vehicle parts is collected by operating the hybrid vehicle for 10 minutes, the cumulative mileage interval of the vehicle can be estimated. This makes it possible to detect the abnormality of the vehicle part relative to the accumulated mileage. It can be used to detect abnormal aging of vehicle parts and to inform maintenance necessity.