• Title/Summary/Keyword: HEP 2

Search Result 1,299, Processing Time 0.031 seconds

Study of hepatoprotective effect of Haegan-jeon through activation of nuclear factor erythroid 2-related factor 2 and optimization of herbal composition based on molecular mechanism (Nuclear factor erythroid 2-related factor 2 활성화를 통한 해간전(解肝煎)의 간세포 보호 효능 및 분자기전을 활용한 해간전(解肝煎) 구성 약물의 최적화 연구)

  • Kim, Jae Kwang;Jung, Ji Yun;Park, Sang Mi;Park, Chung A;Ku, Sae Kwang;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.207-221
    • /
    • 2018
  • Objectives : Present study investigated hepatoprotective effect of Haegan-jeon extract (HE) and tried to elucidate molecular mechanism involved. According to molecular mechanism, present study optimized herbal composition of HE (op-HE) and compared in vitro and in vivo hepatoprotective effects of op-HE to HE. Methods : For in vitro experiments, HepG2 cells were exposed to arachidonic acid (AA, $10{\mu}M$) and iron ($5{\mu}M$) for inducing oxidative stress. Cell viability, GSH contents, $H_2O_2$ production, mitochondrial membrane potential, immunoblot and reporter gene assay were performed to investigate cytoprotective effects and responsible molecular mechanisms. For in vivo experiments, hepatoprotective effect of HE and op-HE were assessed on $CCl_4-induced$ liver injury mice model. Results : HE pretreatment prevented AA+iron-mediated hepatocytes apoptosis. In addition, AA+iron-induced mitochondrial dysfunction, $H_2O_2$ production, glutathione depletion were reduced by HE pretreatment. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation, antioxidant response element (ARE)-driven reporter gene activity, and antioxidant genes expression were increased by HE. Based on reporter gene and MTT assays, we found that op-HE consisting three medicinal herbs also significantly increased transactivation of Nrf2 and reduced the AA+iron-mediated cytotoxicity. Moreover, in $CCl_4-induced$ liver injury mice model, HE-op had an ability to ameliorate $CCl_4-mediated$ increases in serum alanine transferase and aspartate aminotransferase activity, hepatic degeneration, inflammatory cell infiltration, and collagen deposition. Hepatoprotective effects of op-HE were comparable to those of HE. Conclusions : Present study suggests that op-HE as well as HE exhibit hepatoprotective effect against oxidative stress-mediated liver injury via Nrf2 activation.

In vitro Antioxidant Effects of Sarijang (사리장의 항산화 효과)

  • Seo, Bo-Young;Choi, Mi-Joo;Choi, Eun-A;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.618-623
    • /
    • 2014
  • Sarijang, a soy sauce made from fermented black soybean (Rhynchosia nulubilis), sulfur fed duck, dried bark of Ulmus davidiana, Allium sativum, and bamboo salt, has been demonstrated to exert anti-inflammatory and anti-tumor activities. However, the antioxidant properties of Sarijang have not yet been elucidated. In this study, the antioxidant effects of Sarijang were investigated by determining total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total radical trapping antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and cellular antioxidant capacity (CAC). The inhibitory effects of Sarijang on oxidative stress-induced DNA damage (200 ${\mu}M$ $H_2O_2$, 250 ${\mu}M$ Fe-NTA, and 200 ${\mu}M$ HNE) in human leukocytes were evaluated by comet assay. The TPC of Sarijang was $1.04{\pm}0.01$ mg GAE/mL. DPPH RSA, TRAP, and ORAC values of Sarijang increased in a dose-dependent manner. The $IC_{50}$ for DPPH RSA of Sarijang was $11.2{\pm}0.3$ mg/mL, whereas $IC_{50}$ of TRAP was $209.5{\pm}2.0$ mg/mL. 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress and oxidative stress-induced DNA damage in HepG2 cells were effectively abrogated by all tested concentrations of Sarijang (1~100 ${\mu}g/mL$). These results suggest that Sarijang has antioxidative activity and protective effects against oxidative DNA damage.

Regulation of Nrf2 Transactivation Domain Activity by p160 RAC3/SRC3 and Other Nuclear Co-Regulators

  • Lin, Wen;Shen, Guoxiang;Yuan, Xiaoling;Jain, Mohit R.;Yu, Siwang;Zhang, Aihua;Chen, J. Don;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.304-310
    • /
    • 2006
  • Transcription factor NF-E2-related factor 2 (Nrf2) regulates the induction of Phase II detoxifying enzymes and antioxidant enzymes in response to many cancer chemopreventive compounds. In this study, we investigated the role of receptor associated coactivator (RAC3) or steroid receptor coactivator-3 (SRC3) and other nuclear co-regulators including CBP/p300 (CREB-binding protein), CARM1 (Coactivator-associated arginine methyltransferase), PRMT1 (Protein arginine methyl-transferase 1), and p/CAF (p300/CBP-associated factor) in the transcriptional activation of a chimeric Gal4-Nrf2-Luciferase system containing the transactivation domain (TAD) of Nrf2 in HepG2 cells. The results indicated that RAC3 up-regulated the transactivation activity of Gal4-Nrf2-(1-370) in a dose-dependent manner. The enhancement of transactivation domain activity of Gal4-Nrf2-(1-370) by RAC3 was dampened in the presence of dominant negative mutants of RAC3. Next we studied the effects of other nuclear co-regulators including CBP/p300, CARM1, PRMT1 and p/CAF, and the results showed that they had different level of positive effects on this transactivation domain activity of Gal4-Nrf2-(1-370). But importantly, synergistic effects of these co-regulators in the presence of RAC3/SRC3 on the transactivation activity of Gal4-Nrf2-(1-370) were observed. In summary, our present study showed for the first time that the 160 RAC3/SRC3 is involved in the functional transactivation of TAD of Nrf2 and that the other nuclear co-regulators such as CBP/p300, CARM1, PRMT1 and p/CAF can also transcriptionally activate this TAD of Nrf2 and that they could further enhance the transactivation activity mediated by RAC3/SRC3.

Modulation of Nrf2/ARE and Inflammatory Signaling Pathways by Hericium erinaceus Mycelia Extract

  • Jin, Kyong-Suk;Park, Ji-Young;Cho, Mi-Kyung;Jang, Ji-Hyun;Jeong, Jae-Han;Ok, Seon;Bak, Min-Ji;Song, Young-Sun;Kim, Myo-Jeong;Cho, Chung-Won;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1204-1211
    • /
    • 2009
  • Hericium erinaceus is an edible mushroom used as a medicinal food in Asian countries. In this study, the chemopreventive effects of H. erinaceus mycelia hot water extract (HEW) were evaluated. HEW remarkably induced the luciferase activity of the antioxidant response element (ARE), located in the promoter region of phase 2 and antioxidant genes and regulated by nuclear factor E2-related factor 2 (Nrf2). The up-regulation of ARE activity by HEW corresponded with the induction of Nrf2 and the antioxidant enzyme, hemeoxygenase-1. The inhibition of cyclooxygenase-2 (COX-2) activity is a promising effective approach in cancer chemoprevention, and HEW prominently suppressed COX-2 protein expression in HepG2 cells. Furthermore, HEW showed anti-inflammatory activity by modulating inflammatory mediators such as nitric oxide (NO), inducible NO synthase, tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and the transcription factor, nuclear factor-${\kappa}B$, in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that H. erinaceus possessed anti-tumor and anti-inflammatory effects via the modulation of Nrf2/ARE and inflammatory signaling pathways, and may therefore have potential use as a natural chemopreventive agent.

Comparison of the Therapeutic Efficacy of Rhizoma Alismatis, Fructus Crataegi, Fructus Lycii, Radix Curcumae, Radix Salviae Miltiorrhizae, Herba Artemisiae Scopariae on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease (비알코올성 지방간 세포 모델에 대한 택사, 산사, 구기자, 울금, 단삼, 인진의 효능 비교)

  • Han, Chang-Woo;Joo, Myung-Soo;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.533-542
    • /
    • 2012
  • Objectives : We try to compared the efficacy of six herbal medicines, Rhizoma Alismatis (RA), Fructus Crataegi (FC), Fructus Lycii (FL), Radix Curcumae (RC), Radix Salviae Miltiorrhizae (RSM), and Herba Artemisiae Scopariae (HAS), constituting KHchunggan-tang which was previously proven to be hepatoprotective on non-alcoholic fatty liver disease with combined properties of cellular steatosis, ROS production, and cytoprotection. Methods : HepG2 cells were pretreated with aqueous extracts of the six herb medicines at concentrations of 1, 10, 50 and 100 ${\mu}g/ml$ each, and treated with 0.5 mM palmitate consecutively. After 21 hrs, cell viability was assessed using MTT assay, and the percentage of cells with sub-G1 DNA content was measured using fluorescence-activated cell sorting after propidium iodide staining. Results : The first three extracts, RA, FC, and FL restored cell viability reduced by palmitate in MTT assay, and RA, FC, FL and RC inhibited palmitate-induced apoptosis in sub-G1 analysis. FL showed relatively weak potential only at tested maximal dose, and RA showed the greatest higher efficacy on this experimental cellular model of nonalcoholic fatty liver disease. Conclusions : According to this comparative experiment, Rhizoma Alismatis seems to have the most powerful potential among the six herbs constituting KHchunggan-tang, and consecutive further study seems to be required for more standardized and effective clinical application of KHchunggan-tang for treatment of non-alcoholic fatty liver disease.

Thiazinogeldanamycin, a New Geldanamycin Derivative Produced by Streptomyces hygroscopicus 17997

  • Ni, Siyang;Wu, Linzhuan;Wang, Hongyuan;Gan, Maoluo;Wang, Yucheng;He, Weiqing;Wang, Yiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.599-603
    • /
    • 2011
  • A new geldanamycin (GDM) derivative was discovered and isolated from the fermentation broth of Streptomyces hygroscopicus 17997. Its chemical structure was elucidated as thiazinogeldanamycin by LC-MS, sulfur analysis, and NMR. The addition of cysteine to the fermentation medium significantly stimulated the production level of thiazinogeldanamycin, suggesting cysteine as a precursor of thiazinogeldanamycin production. Although showing a decreased cytotoxicity against HepG2 cancer cells, thiazinogeldanamycin exhibited an improved water solubility and photostability. Thiazinogeldanamycin may represent the first natural GDM derivative characterized so far that uses GDM as its precursor. Its appearance also clearly indicates that an appropriate end-point of fermentation is of critical importance for the maximal production of GDM by Streptomyces hygroscopicus 17997.

BIAN N-Heterocyclic Gold Carbene Complexes induced cytotoxicity in human cancer cells via upregulating oxidative stress

  • Farooq, Muhammad;Taha, Nael Abu;Butorac, Rachel R;Evans, Daniel A;Elzatahry, Ahmed A;Wadaan, Mohammad AM;Cowley, Alan H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7003-7006
    • /
    • 2015
  • Background: Nanoparticles of gold and silver are offering revolutionary changes in the field of cancer therapy. N-heterocyclic carbene (NHC) metal complexes possess diverse biological activities and are being investigated as potential chemotherapeutic agents. The purpose of this study was to examine the cytotoxicity and possible mechanisms of action of two types of newly synthesized nanofiber composites containing BIAN N-heterocyclic gold carbene complexes in two types of human cancer cells, namely breast cancer (MCF7) and liver cancer (HepG2) cells and also in normal human embryonic kidney cells (HEK 293). Materials and Methods: Cytotoxicity was assessed by MTT cell viability assay and oxidative stress by checking the total glutathione level. Results: Both compounds affected the cell survival of the tested cell lines at very low concentrations (IC50 values in the micro molar range) as compared to a well-known anti-cancer drug, 5 fluorouracil. A 60-80% depletion in total glutathione level was detected in treated cells. Conclusions: Reduction in total glutathione level is one of the biochemical pathways for the induction of oxidative stress which in turn could be a possible mechanism of action by which these compounds induce cytotoxicity in cancer cell lines. The in vitro toxicity towards cancer cells found here means that these molecules could be potential anticancer candidates.

The Cytotoxic Limonoid From the Fruits of Melia Toosendan (천련자로부터 분리한 Limonoid 성분의 세포독성)

  • Km, Young-Ho;Hwang, Bang-Yeon;Kim, Se-Eun;Kim, Hwan-Mook;Oh, Goo-Taeg;Ro, Jai-Seup;Lee, Kyong-Soon;Lee, Jung-Joon
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.6-11
    • /
    • 1994
  • The MeOH extract of the fruits of Melia toosendan was selected for futher study by its cytotoxicity and effect on the human breast cancer cell line, MCF-7. The active principle obtained by activity guided fractionation followed by purification gave rise to a needle crystal. The structure was deduced by employing NMR and was determined to be identical with 28-deacetyl sendanin by comparison with published data. This compound induced morphological change of MCF-7 to be rounded with tubule at concentrations between $50\;{\mu}g/ml$ and $0.025\;{\mu}g/ml$. This compound, however, showed strong cytotoxic effect on Hepalclc7 and HepG2, and their $GI_{50}$ on the hepatoma cell lines were $0.238\;{\mu}g/ml$ and $0.805\;{\mu}g/ml$, respectively. Its effect on lymphocyte of mouse was stronger than hepatoma cell lines, and their $ED_{50}$ of polyclonal antibody response was $0.011\;{\mu}g/ml$, and $ED_{50}$ of cell viability was $0.039\;{\mu}g/ml$.

  • PDF

Quality Evaluation of the Cinnamon Essential Oils Based on Gas Chromatographic Analysis and Cytotoxicity (가스 크로마토그래피 분석과 세포독성에 의한 계피 정유의 품질평가)

  • Jung, Hyun-Ju;Jung, Won-Tae;Choi, Jong-Won;Nam, Jung-Hwan;Lee, Kyung-Tae;Kwon, Byung-Mok;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.288-292
    • /
    • 2004
  • To evaluate the quality of the crude drugs using three kinds of Cinnamomum Cortex (CC), Vietnamese CC (VCC, the stem bark of Cinnamomum obtusifolium), periderm-peeled Chinese CC (PPCC, periderm-peeled stem bark of C. cassia), Chinese CC (CCC, stem bark of C. cassia) and a Cinnamomi Ramulus (CR, the twig of C. cassia), the four essential oils were prepared by steam distillation method. Cinnamaldehdye (CAN) and an unknown substance tentatively named hydroxy-cinnamaldehdye(HCNA) were detected in the four essential oils by gas chromatography-mass spectrometry, the contents of which are significantly different one another. Vietnamese CC had the highest content of HCNA whereas CR had the highest CAN content and the lowest HCNA. Vietnamese CC exhibited the greatest cytotoxic activity against the cancer cell lines, A549, HepG-2, HL-60, P-388, U-937, and KB and CR the lowest cytotoxicity. Contents of CAN and HCNA in CCC and PPCC are positioned between VCC and CR. These results suggest that measurement of HCNA and cytotoxicity may determine the quality of CC and CR.

Anti-proliferative Effects of Traditional Korean Doenjang across Different Aging Periods on Cancer Cell Lines (숙성기간으로 구분된 전통된장의 암세포 증식억제 효과)

  • Yang, Hye Jeong;Hur, Jinyoung;Hong, Sang Pil
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.5
    • /
    • pp.467-477
    • /
    • 2020
  • Doenjang is a major fermented soy-based food in Korea. Recent investigations have shown that fermented soybean foods have immunity-enhancing, anti-cancer, anti-obesity and anti-diabetic effects. Several studies also have reported that genistein and daidzein, which are easily absorbed in the body are produced in larger quantities in aged doenjang. The purpose of this study was to evaluate the variations in the anti-cancer effects of commercialized doenjang as it ages. Four groups were formed for this study according to aging periods of doenjang, namely short (under 5 years, S group), mid (under 10 years, M group), long (under 15 years, L group) and very long (over 15 years, E group). The anti-cancer effects of doenjang were determined by cell cytotoxicity assays in A549, YAC-1, and HepG2 cancer cell lines. Also, NK cell activity and splenocyte proliferation were assayed for cancer immunotherapy. The quantities of phenolic compounds in doenjang at different ages were also measured. The results showed that the anti-cancer effects increased in the S and M groups for all three cancer cell lines. Interestingly, similar to this result, splenocyte proliferation and NK activity were also the highest in the S and M groups. In contrast, the E group showed significantly reduced splenocyte proliferation. The quantity of phenolic compounds was similar to that of the anti-cancer results. Collectively, these results suggest that the fermentation period of doenjang plays a very important role in determining its anti-cancer effects.