• 제목/요약/키워드: HEMM

검색결과 15건 처리시간 0.018초

급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성 (Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering)

  • 우기도;김상혁;김지영;박상훈
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성 (Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering)

  • 박상훈;우기도;김지영;김상미
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

통전가압활성소결을 이용한 나노 결정립 Ti-35%Nb-7%Zr-10%CPP 복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Nano-sized Ti-35%Nb-7%Zr-10%CPP Composite Fabricated by Pulse Current Activated Sintering)

  • 우기도;강덕수;김상혁;박상훈;김지영;고혜림
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.188-195
    • /
    • 2011
  • The aim of this study was to investigate microstructures and mechanical properties of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composite fabricated by high energy mechanical milling (HEMM) and pulse current activated sintering (PCAS). Grain growth of the mechanically milled powder was prevented by performing PCAS. The principal advantages of calcium phosphate materials include: similarity in composition to the bone mineral, bioactivity, osteoconductivity and ability to form a uniquely strong interface with bone. The hardness and wear resistance property of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composites increased with increasing milling time because of decreased grain-size of sintered composites.

Fabrication of Ultra Fine β-phase Ti-Nb-Sn-HA Composite by Pulse Current Activated Sintering

  • Woo, Kee-Do;Wang, Xiaopeng;Kang, Duck-Soo;Kim, Sang-Hyuk;Woo, Jeong-Nam;Park, Sang-Hoon;Liuc, Zhiguang
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.443-448
    • /
    • 2010
  • The $\beta$ phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The $\beta$ phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from $\alpha$ phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The $\beta$-Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.

고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성 (Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders)

  • 박상훈;우기도;김상혁;이승민;김지영;고혜림;김상미
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.384-390
    • /
    • 2011
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.