• 제목/요약/키워드: HEMM

검색결과 15건 처리시간 0.021초

Utilization Model for HCCA EDCA Mixed Mode in IEEE 802.11e

  • Kuan, Cheng;Dimyati, Kaharudin
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.829-831
    • /
    • 2007
  • This letter proposes an analytical model to characterize medium utilization in IEEE 802.11e operating in HCCA-EDCA mixed mode (HEMM). In contrast to existing works which model the backoff process in individual stations, we consider the channel occupancy pattern. Additionally, our work considers the operation of HEMM, which is not widely documented. We show that the proposed model accurately characterizes medium utilization with no more than 5% error.

  • PDF

이온성 액체를 이용한 메탄 하이드레이트 생성 촉진효과 연구 (Study on the Promotion Effect of Ionic Liquid on CH4 Hydrate Formation)

  • 신주영;김기섭;강성필;문성용
    • Korean Chemical Engineering Research
    • /
    • 제51권4호
    • /
    • pp.500-505
    • /
    • 2013
  • 본 연구에서는 가스 하이드레이트 생성 시 첨가된 이온성 액체가 미치는 생성속도의 향상효과를 조사하였다. 이온성 액체로는 Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl)을 사용하였다. 메탄 하이드레이트의 상평형 곡선을 구하고 생성유도시간과 메탄가스의 소모량을 측정하였다. 20~20,000 ppm의 HEMM-Cl을 준비하여 하이드레이트가 생성될 수 있는 70 bar, 274.15 K 조건에서 실험을 수행하였다. 하이드레이트 생성 속에 대한 비교를 위해 순수한 물과 대표적인 촉진제인 sodium dodecyl sulfate를 같은 조건에서 실험하였다. 실험 결과, 이온성 액체인 HEMM-Cl은 상평형 곡선을 더 높은 압력과 낮은 온도 쪽으로 이동시켰다. 이온성 액체의 첨가 시에는 메탄 하이드레이트의 생성유도시간이 거의 나타나지 않는 것을 알 수 있었다. 메탄가스의 소모량은 모든 농도에서 향상되었고 1,000 ppm에서 가장 많은 양의 가스를 흡수하는 것으로 나타났다. 이온성 액체는 가스 하이드레이트 생성 촉진을 유도하는 것으로 나타났으며 가스저장, 수송 등의 응용기술 개발에 적용이 기대된다.

생체의학 임플란트재료로서 Ti-Nb계 합금의 조직과 기계적 성질에 미치는 HEMM의 영향 (The Effect of HEMM on Microstructure and Mechanical Properties of Ti-Nb Alloy for Implant Biomedical Materials)

  • 우기도;최갑송;이현범;김인용
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.587-592
    • /
    • 2007
  • Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (${\alpha}$-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: ${\beta}$-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.

HEMM에 의한 복합분말의 제조와 급속소결에 의해 제조된 Ti-42wt%Nb/HAp 생체용 복합재료의 생체적합성 및 기계적 특성 연구

  • 우기도;김상혁
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.48.2-48.2
    • /
    • 2009
  • Ti와 Ti-6%Al-4%V합금은 내 부식성 및 생체 적합성이 매우 우수하기 때문에 현재 생체재료로써 널리 사용되고 있다. 하지만 Ti-6%Al-4V합금에 포함된 Al과 V이 신체에 좋지 않은 영향을 줄 수 있다는 연구 결과가 보고되면서 새로운 생체재료의 연구가 활발히 진행되고 있다. 본 연구에서는 생체에 무해한 Ti-Nb와 hydroxyapatite(HAp)를 복합 첨가하여 고에너지볼밀링(high-energy mechanical milling, HEMM)으로 나노 합금분말을 제조 후 급속소결에 의하여 Ti-Nb/HAp 생체재료를 제조 하였다. 제조한 Ti-Nb/HAp 생체용 복합재료에서 HAp 첨가량과 분말의 밀링, 믹싱에 따른 조직 변화와 소결체의 생체적합성의 변화 및 기계적 특성의 변화를 분석하였다. 이때 Ti-42%Nb에 HAp의 첨가량을 0%, 5%, 10%, 15%로 변화를 주었고, 밀링은 고에너지볼밀링기를 이용하여 0~8시간 동안 실시하였다. 그 결과 밀링 시간이 증가할수록 합금 분말의 크기가 미세해졌으며, 특히 8시간 밀링시 분말의 크기가 나노 크기로 감소하여 기계적 특성(경도 및 강도)이 우수해지는 것을 알 수 있었다.

  • PDF

밀링 에너지 변화에 따른 TiC 분말의 미세화 거동에 관한 정량적 연구 (Quantitative Study on the Refinement Behaviors of TiC Powders Produced by Mechanical Milling Under Different Impact Energy)

  • 홍성모;박은광;김경열;박진주;이민구;이창규;이진규;권영순
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.32-39
    • /
    • 2012
  • This study investigated refinement behaviors of TiC powders produced under different impact energy conditions using a mechanical milling process. The initial coarse TiC powders with an average diameter of 9.3 ${\mu}m$ were milled for 5, 20, 60 and 120 mins through the conventional low energy mechanical milling (LEMM, 22G) and specially designed high energy mechanical milling (HEMM, 65G). TiC powders with angular shape became spherical one and their sizes decreased as the milling time increased, irrespective of milling energy. Based upon the FE-SEM and BET results of milled powders, it was found initial coarse TiC powders readily became much finer near 100 nm within 60 min under HEMM, while their sizes were over 200 nm under LEMM, despite the long milling time of up to 120 min. Particularly, ultra-fine TiC powders with an average diameter of 77 nm were fabricated within 60 min in the presence of toluene under HEMM.

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders

  • Woo, Kee-Do;Kim, Sang-Hyuk;Kang, Dong-Soo;Kim, Dong-Gun
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.353-358
    • /
    • 2013
  • To improve coating ability and the life of the coating, Ti based composite materials with hydroxyapatite(HA) should be developed. The raw materials of Ti-26wt%, Nb-1wt%, and Si with 10wt% HA were mixed for 24 h by a mixing machine and milled for 1 h to 6 h by planetary mechanical ball milling. Ti-26%Nb-1%Si-(10%HA) composites, composed of nontoxic elements, were fabricated successfully by spark plasma sintering(SPS) at $1000^{\circ}C$ under 70MPa. The relative density of the sintered Ti-Nb-Si-HA composites using the 24 h mixed powder, and the 6 h milled powder, was 91% and 97 %, respectively. The effects of HA contents and milling time on microstructure and mechanical properties were investigated by SEM and hardness tester, respectively. The Vickers hardness of the composites increased with increasing milling time and higher HA content. The Young's modulus of the sintered Ti-26%Nb-1%Si-10%HA composite using the 6 h-milled powder was 55.6 GPa, as obtained by compression test. Corrosion resistance of the Ti-26wt%Nb-1wt%Si composite was increased by milling and by the addition of 10wt%HA. Wear resistance was improved with increasing milling time. Biocompatibility of the Ti-Nb-Si alloys was improved by the addition of HA.

스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성 (Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering)

  • 우기도;김상미;김동건;김대영;강동수
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

펄스전류 활성 소결에 의해 제조된 나노크기의 TiAl계 금속간화합물의 미세구조와 기계적 특성에 미치는 고에너지 기계적 밀링시간의 영향 (Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering)

  • 김지영;우기도;강덕수;김상혁;박상훈
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.161-166
    • /
    • 2011
  • The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.

HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성 (Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder)

  • 우기도;김동건;이현범;문민석;기웅;권의표
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.