DOI QR코드

DOI QR Code

Study on the Promotion Effect of Ionic Liquid on CH4 Hydrate Formation

이온성 액체를 이용한 메탄 하이드레이트 생성 촉진효과 연구

  • Shin, Ju-Young (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Kisub (Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Kang, Seong-Pil (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Mun, Sungyong (Department of Chemical Engineering, Hanyang University)
  • 신주영 (한양대학교 화학공학과) ;
  • 김기섭 (한국교통대학교 화공생물공학과) ;
  • 강성필 (한국에너지기술연구원 온실가스연구단) ;
  • 문성용 (한양대학교 화학공학과)
  • Received : 2013.04.02
  • Accepted : 2013.05.20
  • Published : 2013.08.01

Abstract

In this study, we investigated the kinetics of gas hydrate formation in the presence of ionic liquid (IL). Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl) was chosen as a material for the promotion effect test. Phase equilibrium curve for $CH_4$ hydrate with aqueous IL solution was obtained and its induction time and consumed amount of $CH_4$ gas were also measured. Aqueous solutions containing 20~20,000 ppm of HEMM-Cl was prepared and studied at 70 bar and 274.15 K. To compare the measured results to those of the conventional promoter, sodium dodecyl sulfate was also tested at the same condition. Result showed that the hydrate equilibrium curve was shifted toward higher pressure and lower temperature region. In addition, the induction time on $CH_4$ hydrate formation in the presence of IL was not shown. The amount of consumed $CH_4$ was increased with the whole range of tested concentration of IL and the highest consumption of $CH_4$ happened at 1,000 ppm of HEMM-Cl. HEMM-Cl induced and enhanced the $CH_4$ hydrate formation with a small amount of addition. Obtained result is expected to be applied for the development of technologies such as gas storage and transport using gas hydrates.

본 연구에서는 가스 하이드레이트 생성 시 첨가된 이온성 액체가 미치는 생성속도의 향상효과를 조사하였다. 이온성 액체로는 Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl)을 사용하였다. 메탄 하이드레이트의 상평형 곡선을 구하고 생성유도시간과 메탄가스의 소모량을 측정하였다. 20~20,000 ppm의 HEMM-Cl을 준비하여 하이드레이트가 생성될 수 있는 70 bar, 274.15 K 조건에서 실험을 수행하였다. 하이드레이트 생성 속에 대한 비교를 위해 순수한 물과 대표적인 촉진제인 sodium dodecyl sulfate를 같은 조건에서 실험하였다. 실험 결과, 이온성 액체인 HEMM-Cl은 상평형 곡선을 더 높은 압력과 낮은 온도 쪽으로 이동시켰다. 이온성 액체의 첨가 시에는 메탄 하이드레이트의 생성유도시간이 거의 나타나지 않는 것을 알 수 있었다. 메탄가스의 소모량은 모든 농도에서 향상되었고 1,000 ppm에서 가장 많은 양의 가스를 흡수하는 것으로 나타났다. 이온성 액체는 가스 하이드레이트 생성 촉진을 유도하는 것으로 나타났으며 가스저장, 수송 등의 응용기술 개발에 적용이 기대된다.

Keywords

References

  1. Sloan, E. D., Clathrate Hydrate of Natural Gases, 3rd ed., CRC Press, Boca Raton, FL(2008).
  2. Seol, J. and Lee, H., "Natural Gas Hydrate as a Potential Energy Resource: From Occurrence to Production," Korean J. Chem. Eng., 30(4), 771-786(2013). https://doi.org/10.1007/s11814-013-0033-8
  3. Kang, S. P. and Lee, J. W., "Study on Characteristics of $CO_{2}$ Hydrate Formation Using Micro-sized Ice," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 50(4), 690-695(2012). https://doi.org/10.9713/kcer.2012.50.4.690
  4. Clarke, M. A. and Bishnoi, P. R., "Measuring and Modeling the Rate of Decomposition of Gas Hydrates Formed from Mixtures of Methane and Ethane," Chem. Eng. Sci., 56(16), 4715-4724(2001). https://doi.org/10.1016/S0009-2509(01)00135-X
  5. Handa, Y., "Calorimetric Determination of the Compositions, Enthalpies of Dissociation and Heat Capacities in the Range of 80-270 K for Clathrate Hydrates of Xenon and Krypton," J. Chem. Thermodyn., 18(9), 891-902(1986). https://doi.org/10.1016/0021-9614(86)90124-2
  6. Gudmundsson, J. S., Khodakar, A. A. and Parlaktuna, M., "Storage of Natural Gas as Frozen Hydrate," The 67th Annual Technical Conference and Exhibition of SPE, October, Washington DC (1992).
  7. Daimaru, T., Yamasaki, A. and Yanagisawa, Y., "Effect of Surfactant Carbon Chain Length on Hydrate Formation Kinetics," Chem. Eng. Sci., 56(1-3), 89-96(2007).
  8. Vysniauskas, A. and Bishnoi, P. R., "A Kinetic Study of Methane Hydrate Formation," Chem. Eng. Sci., 38(7), 1061-1972(1983). https://doi.org/10.1016/0009-2509(83)80027-X
  9. Narita, H. and Uchida, T., "Studies on Formation/Dissociation Rates of Methane Hydrates," Second International Conference on NGH, Toulouse, France(1996).
  10. Ohmura, R., Kashiwazaki, S., Shiota, S., Tsuji, H. and Mori, Y. H., "Structure-I and Structure-H Hydrate Formation Using Water Spraying," Energy Fuels, 16(5), 1141-1147(2002). https://doi.org/10.1021/ef0200727
  11. Kalogerakis, N., Jamaluddin, A. K. M., Dholabhai, P. D. and Bishnoi, P. R., "Effect of Surfactants on Hydrate Formation Kinetic," SPE International Symposium on Oilfield Chemistry, New Orleans, LA(1993).
  12. Khokhar, A. A., Gudmundsson, J. S. and Sloan, E. D., "Gas Storage in Structure H Hydrates," Fluid Phase Equilib., 151-152, 383- 392(1998).
  13. Han, X., Wang, S., Chen, X. and Liu, F., "Surfactant Accelerates Gas Hydrate Formation," 4th International Conference on Gas Hydrates, Yokohama, Japan(2002).
  14. Guo, Y., Fan, S., Guo, K. and Chen, Y., "Storage Capacity of Methane in Hydrate Using Calcium Hypochlorite as Additive," 4th International Conference on Gas Hydrates, Yokohama, Japan(2002).
  15. Sun, Z., Wang, R., Ma, R., Guo, K. and Fan, S., "Natural Gas Storage in Hydrate with the Presence of Promoters," Energy Conv. Manag., 44(17), 2733-2742(2003). https://doi.org/10.1016/S0196-8904(03)00048-7
  16. Zhang, C. S., Fan, S. S., Liang, D. Q. and Guo, K, H., "Effect of Additives on Formation of Natural Gas Hydrate," Fuel, 83(16), 2115-2121(2004). https://doi.org/10.1016/j.fuel.2004.06.002
  17. Ganji, H., Manteghian, M., Sadaghiani, zadeh, K., Omidkhah, M. R. and Rahimi Mofrad, H., "Effect of Different Surfactants on Methane Hydrate Formation Rate, Stability and Storage Capacity," Fuel, 86(3), 434-441(2007). https://doi.org/10.1016/j.fuel.2006.07.032
  18. Daimaru, T., Yamasaki, A. and Yanagisawa, Y., "Effect of Surfactant Carbon Chain Length on Hydrate Formation Kinetics," J. Petrol. Sci. Eng., 56(1-3), 89-96(2007). https://doi.org/10.1016/j.petrol.2005.07.007
  19. Chen, Q., Yu, Y., Zeng, P., Yang, W., Liang, Q., Peng, X., Liu, Y. and Hu, Y., "Effect of 1-butyl-3-methylimidazolium Tetrafluoroborate on the Formation Rate of $CO_{2}$ Hydrate," J. Nat. Gas Chem., 17(3), 264-267(2008). https://doi.org/10.1016/S1003-9953(08)60061-4
  20. Makino, T., Matsumoto, Y., Sugahara, T., Ohgaki, K. and Masuda, H., "Effect of Ionic Liquid on Hydrate Formation Rate in Carbon Dioxide Hydrates," 7th International Conference on Gas Hydrates, Edinburgh, UK(2011).
  21. Zhong, Y. and Rogers, R. E., "Surfactant Effects on Hydrate Formation," Chem. Eng. Sci., 55(19), 4175-4187(2000). https://doi.org/10.1016/S0009-2509(00)00072-5
  22. Kwon, Y. A., Park, J. M., Jeong, K. E., Kim, C. U. Kim, T. W., Chae, H. J., Jeong, S. Y., Yim, J. H., Park, Y. K. and Lee, J. D., "Synthesis of Anionic Multichain Type Srrfactant and Its Effect on Methane Gas Hydrate Formation," J. Ind. Eng. Chem., 17(1), 120-124(2011). https://doi.org/10.1016/j.jiec.2010.12.008
  23. Deaton, W. M. and Frost, E. M., "Gas Hydrates and Their Relation to the Operation of Natural Gas Pipelines," Monograph, American Gas Association(1946).

Cited by

  1. Kinetic Promotion and Inhibition of Methane Hydrate Formation by Morpholinium Ionic Liquids with Chloride and Tetrafluoroborate Anions vol.30, pp.5, 2016, https://doi.org/10.1021/acs.energyfuels.6b00271