• Title/Summary/Keyword: HEK 293

Search Result 272, Processing Time 0.027 seconds

Characterization of HEK293 and Namalwa Cell Cultures by Using Design of Experiment (실험계획법을 이용한 HEK293 및 Namalwa 세포배양 특성 규명)

  • Kang, Kyung-Ho;Seo, Joon-Serk;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Various human host cell lines, which are more effective than the other original human cell lines, have been developed and used. Highly efficient human cell line can be obtained from the fusion between human embryonic kidney 293 (HEK293) and human Burkitt's lymphoma cells (Namalwa). Fused cell line has the advantages of both cell lines such as the high transfection efficacy of HEK293 cells and the constitutive expression of Epstein-Barr virus (EBV) genome which is related with high expression of target protein and anti-apoptotic growth of Namalwa cells. In this study, characterization of two original cell lines was performed by using design of experiment (DOE) considering cell maintenance, media development, optimization of culture condition, and scale-up. The formation of aggregates was apparent with high glutamine concentration at more than 6 mM. Supplementation of hydrolysates showed positive effects on the growth performances of HEK293 cells. On the contrary, Namalwa cells showed negative results. It was confirmed that Namalwa cells were more sensitive to lower temperature at $35^{\circ}C$ and hyperosmotic condition over 260 mOsm/kg. In addition, both cell lines showed limited growth in 3-L bioreactor due to shear stress.

Electrophysiological Responses of ${\delta}-Opioid$ Receptor Expressed on HEK293 Cells

  • Kim, Jin-Hyuk;Koh, Young-Ik;Chin, He-Min;Lee, Yong-Sung;Cho, Yeul-Hee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.301-307
    • /
    • 1995
  • To explore electrophysiological properties of the ${\delta}-Opioid$ receptors artificially expressed in the mammalian cell, effect of an opioid agonist DPDPE $(1\;{\mu}M)$ on the voltage-sensitive outward currents was examined in the HEK293 (human embryonic kidney) cells transfected with ${\delta}-Opioid$ receptor cDNA cloned from NG-108-15 $(neuroblastoma\;{\times}\;glioma\;hybrid)$ cDNA library. Also studied were effects of 8-bromo-cyclic AMP and naloxone on DPDPE-induced changes in the voltage sensitive outward current. The voltage sensitive outward currents were recorded using perforated patch technique at room temperature. In the non-transformed HEK293 cells, DPDPE did not alter voltage sensitive outward current, indicating that no native ${\delta}-Opioid$ receptor had been developed. However, $(1\;{\mu}M)$ DPDPE remarkably increased the voltage sensitive outward current in the transformed HEK293 cells. The increment in voltage sensitive outward current peaked in $7{\sim}10\;minutes$ after DPDPE application, and the maximum DPDPE-activated outward current $(313.1{\pm}12.3\;pA)$ was recorded when the membrane potential was depolarized to +70mv. Following pretreatment of the transformed HEK293 cells with 1 mM 8-bromo-cyclic AMP, DPDPE failed to increase the voltage sensitive outward currents. On the other hand, naloxone completely abolished DPDPE-activated voltage sensitive outward current in the transformed HEK293 cells. The results of present study suggest that in the transformed HEK293 cells an activation of the ${\delta}-Opioid$ receptors by an opioid agonist DPDPE increases the voltage-sensitive potassium current as a result of decrement in cyclic AMP level.

  • PDF

Differential expression patterns of gangliosides in the tissues and cells of NIH-mini pig kidneys

  • Cho, Jin-Hyoung;Kim, Ji-Su;Lee, Young-Choon;Oh, Keon-Bong;Kwak, Dong-Hoon;Kim, Won-Sin;Hwang, Seong-Soo;Ko, Ki-Sung;Chang, Kyu-Tae;Choo, Young-Kug
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Gangliosides are a ubiquitous component of the membranes of mammalian cells that have been suggested to play important roles in various cell functions such as cell-cell interaction, adhesion, cell differentiation, growth control and signaling. However, the role that gangliosides play in the immune rejection response in xenotransplantation is not yet clearly understood. In this study, differential expression patterns of gangliosides in HEK293 (human embryonic kidney cells), PK15 (porcine kidney cells), NIH-kd (NIH-mini pig kidney cells, primary cultured) and the cortex, medulla and calyx of the NIH-mini pig kidney were investigated by high-performance thin-layer chromatography (HPTLC). The results revealed that HEK293, PK15 and NIH-kd contained GM3, GM2 and GD3 as major gangliosides. Moreover, GM3, which are the gangliosides of NIH-kd, were expressed at higher levels than HEK293 and PK15. Especially, GT1b were expressed in HEK293 and NIH-kd but not in PK15. Finally, GM1 and GD1a were expressed in NIH-kd, but not in HEK293 or PK15. These results suggest that differential expression patterns of gangliosides from HEK293, PK15 and NIH-kd are related to the immune rejection response in xenotransplantation.

Cardiac Safety Assessment of Medicinal Herbal Formulas Using hERG-HEK 293 cell (hERG 칼륨 채널 매개성 HEK 293 세포를 이용한 한약 처방의 심장 독성 평가 연구)

  • Choi, Susanna;Kwon, Oh-Bin;Lee, SION;Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.94-105
    • /
    • 2019
  • Objectives: The correlation between medicinal herbal formulas and a risk of cardiotoxicity has been controversial. Thus, this study investigated cardiac safety assessment of 52 most commonly used medicinal herbal formulas. Methods: We evaluated the in vitro effects of medicinal herbal formulas on recombinant human embryonic kidney 293 (HEK 293) cell line expressing human ether-a-go-go-related gene (hERG) potassium channel. Results and Conclusion: Our results demonstrated that all of 52 medicinal herbal formulas did not show inhibition of hERG current in hERG-HEK 293 recombinant cells. In conclusion, these safety data suggest that 52 medicinal herbal formulas were not associated with an increased risk of cardiotoxicity in hERG-HEK 293 recombinant cells.

Effects of TNF Secreting HEK Cells on B Lymphocytes' Apoptosis in Human Chronic Lymphocytic Leukemias

  • Valizadeh, Armita;Ahmadzadeh, Ahmad;Teimoori, Ali;Khodadadi, Ali;Saki, Ghasem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9885-9889
    • /
    • 2014
  • Background: Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is an antitumor candidate in cancer therapy. This study focused on effects of TRAIL, as a proapototic ligand that causes apoptosis, in B-CELL chronic lymphocytic leukemia cells (B-CLL). Materials and Methods: A population of HEK 293 cells was transducted by lentivirus that these achieved ability for producing the TRAIL protein and then HEK 293 cells transducted were placed in the vicinity of CLL cells. After 24 hours of co-culture, apoptosis of CLL cells was assessed by annexin V staining. Results: The amount of Apoptosis was examined separately in four groups: 293 HEK TRAIL ($16.17{\pm}1.04%$); 293 HEK GFP ($2.7{\pm}0.57%$); WT 293 HEK ($2{\pm}2.6%$); and CLL cells ($0.01{\pm}0.01%$). Among the groups studied, the maximum amount of apoptosis was in the group that the vector encoding TRAIL was transducted. In this group, the mean level of soluble TRAIL in the culture medium was 253pg/ml; also flow cytometry analyzes showed that proapotosis in this group was $32.8{\pm}1.6%$, which was higher than the other groups. Conclusions: In this study, we have demonstrated that TNF secreted from HEK 293 cells are effective in death of CLL cells.

Transcriptional Profiling and Dynamical Regulation Analysis Identify Potential Kernel Target Genes of SCYL1-BP1 in HEK293T Cells

  • Wang, Yang;Chen, Xiaomei;Chen, Xiaojing;Chen, Qilong;Huo, Keke
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.691-698
    • /
    • 2014
  • SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.

RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells (캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과)

  • Kim, Sung-Dae;Lee, Whi-Min;Endale, Mehari;Cho, Jae-Youl;Park, Hwa-Jin;Oh, Jae-Wook;Rhee, Man-Hee
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1506-1513
    • /
    • 2009
  • RGS proteins have been identified as negative regulators of G protein signalling pathways and attenuate the activity of GPCR receptors. However, information on the regulatory effects of RGS proteins in the activity of cannabinoid receptors is limited. In this study, the role of RGS proteins on the signal transduction of the CB2 cannabinoid receptor was investigated in HEK293 cells co-transfected with CB2-receptors and plasmids encoding RGS2, RGS3, RGS4 and RGS5. Treatment of cells with WIN55, 212-2, a CB2 receptor agonist, inhibited forskolin-induced cAMP response element (CRE) activity in CB2-transfected HEK293 (CB2-HEK293) cells. This inhibitory effect of WIN 55, 212-2 on CRE activity was reversed by co-transfection of CB2-HEK293 cells with RGS3, but not with RGS2, RGS4 and RGS5. However, endogenous RGS3 protein knocked down by a small interfering siRNA targeting RGS3 gene enhanced inhibition of forskolin induced CRE activity via agonist induced CB2 receptor signal transduction. These results indicate the functional role of endogenous RGS protein in cannabinoid signaling pathways and define receptor-selective roles of endogenous RGS3 in modulating CRE transcriptional responses to agonist induced CB2 receptor activity.

Heat Shock Protein 90 Regulates the Stability of c-Jun in HEK293 Cells

  • Lu, Chen;Chen, Dan;Zhang, Zhengping;Fang, Fang;Wu, Yifan;Luo, Lan;Yin, Zhimin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.210-214
    • /
    • 2007
  • The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.

Bone Formation by rhBMP-7 Transduced HEK 293 Cells in Nude Mouse (재조합 BMP-7 유전자가 전달된 HEK 293 세포에 의한 누드 마우스에서의 뼈형성)

  • Jeong, Su-Yon;Chang, Won-Tae;Chang, Yon-Sil;Ahn, Myun-Hwan;Kim, Jae-Ryong;Song, In-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2003
  • To induce bone formation at ectopic site by tissue engineering and gene therapy, we transplanted collagen sponges containing rhBMP-7 transduced HEK 293 cells in the hypodermis of nude mice. Bone formation was investigated by histological and electron microscopic method at 3, 6, and 9 weeks after transplantation. At 9 weeks after transplantation, eosinophilic bony tissue was observed in the implanted collagen sponge and was confirmed as bone tissue by Von Kossa stain. In the transmission electron microscopic observation, the cells in newly formed bone tissue had eccentrically located nucleus and well developed rough endoplasmic reticulum (rER). Therefore, the cells were evaluated as osteoblasts. Those results suggest that it is possible to form a bone tissue in the ectopic site by transplantation of rhBMP-7 transduced HEK 293 cells. This will be contributed to push more advanced gene therapy for bone formation. However, the HEK 293 cell is unable to apply to the clinical gene therapy. Therefore it is worth to find more compatible cells for clinical application. In addition, collagen sponge is considered as an excellent scaffold and/or carrier for gene therapy and a good biomaterial for tissue engineering.

  • PDF