DOI QR코드

DOI QR Code

Transcriptional Profiling and Dynamical Regulation Analysis Identify Potential Kernel Target Genes of SCYL1-BP1 in HEK293T Cells

  • Wang, Yang (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Chen, Xiaomei (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Chen, Xiaojing (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University) ;
  • Chen, Qilong (Research Center for TCM Complexity System, Shanghai University of TCM) ;
  • Huo, Keke (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University)
  • Received : 2014.06.30
  • Accepted : 2014.08.13
  • Published : 2014.09.30

Abstract

SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.

Keywords

References

  1. Al-Dosari, M., and Alkuraya, F.S. (2009). A novel missense mutation in SCYL1BP1 produces geroderma osteodysplastica phenotype indistinguishable from that caused by nullimorphic mutations. Am. J. Med. Genet. A 149A, 2093-2098. https://doi.org/10.1002/ajmg.a.32996
  2. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
  3. Beas, A.O., Taupin, V., Teodorof, C., Nguyen, L.T., Garcia-Marcos, M., and Farquhar, M.G. (2012). Gas promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin). Mol. Biol. Cell 23, 4623-4634. https://doi.org/10.1091/mbc.E12-02-0133
  4. Bergeland, T., Haugen, L., Landsverk, O.J., Stenmark, H., and Bakke, O. (2008). Cell-cycle-dependent binding kinetics for the early endosomal tethering factor EEA1. EMBO Rep. 9, 171-178. https://doi.org/10.1038/sj.embor.7401152
  5. Birkbak, N.J., Kochupurakkal, B., Izarzugaza, J.M., Eklund, A.C., Li, Y., Liu, J., Szallasi, Z., Matulonis, U.A., Richardson, A.L., Iglehart, J.D., et al. (2013). Tumor mutation burden forecasts outcome in ovarian cancer with BRCA1 or BRCA2 mutations. PLoS One 8, e80023. https://doi.org/10.1371/journal.pone.0080023
  6. Brooks, C.L., and Gu, W. (2006). p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307-315. https://doi.org/10.1016/j.molcel.2006.01.020
  7. Chen, L., Liu, R., Liu, Z.P., Li, M., and Aihara, K. (2012). Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342. https://doi.org/10.1038/srep00342
  8. Chen, Q.-L., Lu, Y.-Y., Zhang, G.-B., Song, Y.-N., Zhou, Q.-M., Hui Zhang, Zhang, W., and Su, S.-B. (2013a). Progression from excessive to deficient syndromes in chronic hepatitis B: adynamical network analysis of miRNA array data. Evid. Based Complement. Alternat. Med. 2013, 945245.
  9. Chen, Q.L., Lu, Y.Y., Zhang, G.B., Song, Y.N., Zhou, Q.M., Zhang, H., Zhang, W., Tang, X.S., and Su, S.B. (2013b). Characteristic analysis from excessive to deficient syndromes in hepatocarcinoma underlying miRNA array data. Evid. Based Complement. Alternat. Med. 2013, 324636.
  10. Di, Y., Li, J., Fang, J., Xu, Z., He, X., Zhang, F., Ling, J., Li, X., Xu, D., Li, L., et al. (2003). Cloning and characterization of a novel gene which encodes a protein interacting with the mitosis-associated kinase-like protein NTKL. J. Hum. Genet. 48, 315-321.
  11. Egawa, C., Miyoshi, Y., Takamura, Y., Taguchi, T., Tamaki, Y., and Noguchi, S. (2001). Decreased expression of BRCA2 mRNA predicts favorable response to docetaxel in breast cancer. Int. J. Cancer 95, 255-259. https://doi.org/10.1002/1097-0215(20010720)95:4<255::AID-IJC1043>3.0.CO;2-O
  12. Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259-269. https://doi.org/10.1038/nrc1840
  13. Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA 105, 14879-14884. https://doi.org/10.1073/pnas.0803230105
  14. Guo, Y., Feng, Y., Trivedi, N.S., and Huang, S. (2011). Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification. Exp. Biol. Med. (Maywood) 236, 628-636. https://doi.org/10.1258/ebm.2011.010324
  15. Hennies, H.C., Kornak, U., Zhang, H., Egerer, J., Zhang, X., Seifert, W., Kuhnisch, J., Budde, B., Natebus, M., Brancati, F., et al. (2008). Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 40, 1410-1412. https://doi.org/10.1038/ng.252
  16. Hou, J., Lin, L., Zhou, W., Wang, Z., Ding, G., Dong, Q., Qin, L., Wu, X., Zheng, Y., Yang, Y., et al. (2011). Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19, 232-243. https://doi.org/10.1016/j.ccr.2011.01.001
  17. Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai, W.T., Chen, G.Z., Lee, C.J., Chiu, C.M., et al. (2011). miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39, D163-169. https://doi.org/10.1093/nar/gkq1107
  18. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1-13. https://doi.org/10.1093/nar/gkn923
  19. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
  20. Karami, F., and Mehdipour, P. (2013). A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed. Res. Int. 2013, 928562.
  21. King, M.C., Marks, J.H., and Mandell, J.B. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643-646. https://doi.org/10.1126/science.1088759
  22. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500. https://doi.org/10.1038/ng1536
  23. Leng, R.P., Lin, Y., Ma, W., Wu, H., Lemmers, B., Chung, S., Parant, J.M., Lozano, G., Hakem, R., and Benchimol, S. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779-791. https://doi.org/10.1016/S0092-8674(03)00193-4
  24. Li, M., Vattulainen, S., Aho, J., Orcholski, M., Rojas, V., Yuan, K., Helenius, M., Taimen, P., Myllykangas, S., De Jesus Perez, V., et al. (2014). Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 50, 1118-1128 https://doi.org/10.1165/rcmb.2013-0349OC
  25. Luo, T., Cui, S., Bian, C., and Yu, X. (2013). Crosstalk between TGFbeta/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92 cluster in carotid artery restenosis. Mol. Cell. Biochem. 389, 169-176.
  26. Lytle, J.R., Yario, T.A., and Steitz, J.A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc. Natl. Acad. Sci. USA 104, 9667-9672. https://doi.org/10.1073/pnas.0703820104
  27. Magwood, A.C., Mundia, M.M., and Baker, M.D. (2012). High levels of wild-type BRCA2 suppress homologous recombination. J. Mol. Biol. 421, 38-53. https://doi.org/10.1016/j.jmb.2012.05.007
  28. Nepusz, T., Yu, H., and Paccanaro, A. (2012). Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471-472. https://doi.org/10.1038/nmeth.1938
  29. Norquist, B.M., Garcia, R.L., Allison, K.H., Jokinen, C.H., Kernochan, L.E., Pizzi, C.C., Barrow, B.J., Goff, B.A., and Swisher, E.M. (2010). The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations. Cancer 116, 5261-5271. https://doi.org/10.1002/cncr.25439
  30. Poteryaev, D., Datta, S., Ackema, K., Zerial, M., and Spang, A. (2012). Identification of the switch in early-to-late endosome transition. Cell 141, 497-508.
  31. Ramanathan, H.N., and Ye, Y. (2012). The p97 ATPase associates with EEA1 to regulate the size of early endosomes. Cell Res. 22, 346-359. https://doi.org/10.1038/cr.2011.80
  32. Ramanathan, H.N., Zhang, G., and Ye, Y. (2013). Monoubiquitination of EEA1 regulates endosome fusion and trafficking. Cell Biosci. 3, 24. https://doi.org/10.1186/2045-3701-3-24
  33. Rytelewski, M., Ferguson, P.J., Maleki Vareki, S., Figueredo, R., Vincent, M., and Koropatnick, J. (2013). Inhibition of BRCA2 and thymidylate synthase creates multidrug sensitive tumor cells via the induction of combined "Complementary Lethality". Mol. Ther. Nucleic Acids 2, e78. https://doi.org/10.1038/mtna.2013.7
  34. Sawada, H., Saito, T., Nickel, N.P., Alastalo, T.P., Glotzbach, J.P., Chan, R., Haghighat, L., Fuchs, G., Januszyk, M., Cao, A., et al. (2014). Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J. Exp. Med. 211, 263-280. https://doi.org/10.1084/jem.20111741
  35. Shive, H.R., West, R.R., Embree, L.J., Golden, C.D., and Hickstein, D.D. (2014). brca2 and tp53 collaborate in tumorigenesis in zebrafish. PLoS One 9, e87177. https://doi.org/10.1371/journal.pone.0087177
  36. Spaziani, A., Alisi, A., Sanna, D., and Balsano, C. (2006). Role of p38 MAPK and RNA-dependent protein kinase (PKR) in hepatitis C virus core-dependent nuclear delocalization of cyclin B1. J. Biol. Chem. 281, 10983-10989. https://doi.org/10.1074/jbc.M512536200
  37. Stegh, A.H. (2013). Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Exp. Opin. Ther. Targets 16, 67-83.
  38. van Iterson, M., Bervoets, S., de Meijer, E.J., Buermans, H.P., tHoen, P.A., Menezes, R.X., and Boer, J.M. (2013). Integrated analysis of microRNA and mRNA expression: adding biological significance to microRNA target predictions. Nucleic Acids Res. 41, e146. https://doi.org/10.1093/nar/gkt525
  39. Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182. https://doi.org/10.1016/S0092-8674(02)00615-3
  40. Vergoulis, T., Vlachos, I.S., Alexiou, P., Georgakilas, G., Maragkakis, M., Reczko, M., Gerangelos, S., Koziris, N., Dalamagas, T., and Hatzigeorgiou, A.G. (2012). TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 40, D222-229. https://doi.org/10.1093/nar/gkr1161
  41. Vlachos, I.S., Kostoulas, N., Vergoulis, T., Georgakilas, G., Reczko, M., Maragkakis, M., Paraskevopoulou, M.D., Prionidis, K., Dalamagas, T., and Hatzigeorgiou, A.G. (2012). DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, W498-504. https://doi.org/10.1093/nar/gks494
  42. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T. (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105-110. https://doi.org/10.1093/nar/gkn851
  43. Yan, J., Zhang, D., Di, Y., Shi, H., Rao, H., and Huo, K. (2010a). A newly identified Pirh2 substrate SCYL1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination. FEBS Lett. 584, 3275-3278. https://doi.org/10.1016/j.febslet.2010.06.027
  44. Yan, J., Di, Y., Shi, H., Rao, H., and Huo, K. (2010b). Overexpression of SCYL1-BP1 stabilizes functional p53 by suppressing MDM2-mediated ubiquitination. FEBS Lett. 584, 4319-4324. https://doi.org/10.1016/j.febslet.2010.09.019
  45. Yang, D., Khan, S., Sun, Y., Hess, K., Shmulevich, I., Sood, A.K., and Zhang, W. (2011). Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557-1565. https://doi.org/10.1001/jama.2011.1456
  46. Zeng, Y., Qu, X., Li, H., Huang, S., Wang, S., Xu, Q., Lin, R., Han, Q., Li, J., and Zhao, R.C. (2012). MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 586, 2375-2381. https://doi.org/10.1016/j.febslet.2012.05.049
  47. Zhang, L., Li, J., Wang, C., Ma, Y., and Huo, K. (2005). A new human gene hNTKL-BP1 interacts with hPirh2. Biochem. Biophys. Res. Commun. 330, 293-297. https://doi.org/10.1016/j.bbrc.2005.02.156
  48. Zheng, S., Tansey, W.P., Hiebert, S.W., and Zhao, Z. (2011). Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC Med. Genomics 4, 62. https://doi.org/10.1186/1755-8794-4-62

Cited by

  1. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage vol.11, pp.23, 2014, https://doi.org/10.18632/aging.102528