• Title/Summary/Keyword: HDPE Pipe

Search Result 39, Processing Time 0.023 seconds

Cover Requirements for Corrugated HDPE and PVC Pipes Used for Cross-drains in Highway Construction (고속도로 하부 횡단 배수시설로 사용되는 파형 플래스틱 관의 덮개 요건)

  • Kang, Junsuk;Davidson, James S.;Lim, Jeong-Hyeon;Kang, Young Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This project investigated the use of two types of thermoplastic pipes, High-Density Polyethylene (HDPE) and Poly-vinyl Chloride (PVC), as cross-drains under highways. Pipes ranging from 0.3 m (12 in.) to 1.5 m (60 in.) in diameter were evaluated under deep fills, minimum cover, and construction loads. In addition to a comprehensive literature review, an analytical study into the allowable fill heights for thermoplastic pipes and a field study to observe the installation and performance of the pipe in service conditions were conducted. Based on the study findings, recommendations regarding how and when thermoplastic pipe should be installed are provided.

Effect of Pile Driving on Three Layered Pipeline according to Soil Properties Variation (지반 물성값에 따른 항타 진동이 지중 삼중관에 미치는 거동 분석)

  • Yoo, Han-Kyu;Choi, Joung-Hyun;Won, Jong-Hwa;Kim, Moon-Kyum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.765-770
    • /
    • 2010
  • In this study, the behavior of underground pipeline subjected to pile driving is examined using the verified finite element model based on the field experiment. Young's modules of surface soil is varied and elastic modulus of the other soil layer is fixed. The pile driving force model proposed by Mounir E. Mabsout in 1999 was used and it was functions of time and of force. The forcing function applied on this study considers the kinetic energy of ram located at 1.2m height with 7 tonf. The 3-layered pipeline is composed of steel(inner) pipe, PUR(Polyurethane Resin, filler) and HDPE(outer) pipe, and the length/diameter of main steel pipe is 20m/0.8m(O.D). It is used for district heating pipes in Korea. The results are expressed in terms of Von Mises stress, displacement, and vibration velocity for each soil condition. From the results of the analyses, PUR which is originally intended as a thermal insulation of inner pipe shows performance as a structural member which distributes external pressure.

  • PDF

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

FEM Analysis on the Damage for the Cable of Cabled-suspension Bridges by Fire (화재에 의한 사장교 케이블의 유한요소 해석)

  • Song, Young-Sun;Lee, Byung-Sik;Kim, Hyeong-Joo;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2008
  • Recently, cabled-suspension bridges and suspension bridge have been increasingly built in korea. But such structures were often damaged by fire due to car collison. In this study, the cabled-suspension bridges constructed under the kind of the project of national road aggrandizement are modeled using Solid Works 2007. The COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. The major variables for the analysis are the temperature of the heat source, the distance between the fire-proof bulk head and the heat source, wind velocity, and the height of the end of Stainless steel pipe.

Design Validation and Improvement of District Heating Pipe Using FE Simulation (유한요소 시뮬레이션을 통한 지역난방열배관 특성 평가 및 강화이형관의 제안)

  • Kim, Joo-Yong;Kim, Ho-Bum;Ko, Hyun-Il;An, Yong-Mo;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.337-345
    • /
    • 2009
  • This paper investigates the reliability of district heating pipes at thermo-elastic fatigue loading. District heating pipes, subjected to $120^{\circ}C$ and $16kg_f/cm^2$ due to water distributing service through inside the pipes, should endure long term cyclic thermal-mechanical loadings. The heating pipes are the co-centric tubes of steel pipe, poly urethane(PUR) insulator, and high density poly ethylene(HDPE) case. On installation, foam pad is externally wrapped for accommodating stress reduction near the bend sections of pipes. However, there have been frequent reports on the failures of bend sections in the middle of long term service. This study scrutinizes the observed failures near the bend sections through applying the finite element methods. Specially in this study, heating pipes are studied on the influence of foam padding on failures and proposed new designs for reinforced bend without foam pad.

Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory (Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델)

  • Wee, Jung-Wook;Choi, Byoung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.

Investigation on the thermal butt fusion performance of the buried high density polyethylene piping in nuclear power plant

  • Kim, Jong-Sung;Oh, Young-Jin;Choi, Sun-Woong;Jang, Changheui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1142-1153
    • /
    • 2019
  • This paper presents the effect of fusion procedure on the fusion performance of the thermal butt fusion in the safety class III buried HDPE piping per various tests performed, including high speed tensile impact, free bend, blunt notched tensile, notched creep, and PENT tests. The suitability of fusion joints and qualification procedures was evaluated by comparing test results from the base material and buttfusion joints. From the notched tensile test result, it was found that the fused joints have much lower toughness than the base material. It was also identified that the notched tensile test is more desirable than the high speed tensile impact and free bend tests presented in the ASME Code Case N-755-3 as a fusion qualification test method. In addition, with regard to the single low-pressure fusion joint performances, the procedure given by the ISO 21307 was determined to be better that the one specified in the Code Case N-755-3.

Development of Tribo-electrostatic Separation Technique for Scale-up Process of Heavy Group Plastic Tailings (고비중(高比重) 종말품(終末品) 폐(廢)플라스틱 대량처리(大量處理)를 위한 마찰하전(摩擦荷電) 정전선별(靜電選別) 기술개발(技術開發))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Bong-Gon
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.30-38
    • /
    • 2009
  • In this research, we studied the scale-up triboelectrostatic process for separation of PVC from higher gravity fraction of plastic wastes produced from wet gravity separation process. High density polyethylene (HDPE) was found to be the most effective materials for a tribo-charger in the separation of plastic tailings. In a commercial scale triboelelctrostatic separator unit, using the HDPE pipe-line charger, a grade of 99.1% with PET, PS and others and a recovery of 86% was obtained under optimum conditions at over 250 kV/m electric field, a splitter position of -8 cm from the center, and less than 40% relative humidity. The developed unit can process the plastic wastes at a 300 kg/h, and the product can be utilized as RPF or RDF of over grade 2.

Effects of Pipe Network Materials and Distance on Unused Energy Source System Performance for Large-scale Horticulture Facilities (배관 재질 및 길이에 따른 대규모 시설원예단지용 미활용 에너지 시스템의 성능 평가)

  • Lee, Jae-Ho;Yoon, Yeo-Beom;Hyun, In-Tak;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2014
  • This study investigated the effects of pipe network materials and distance on system performance utilizing unused energy sources in large-scale horticulture facility. For this, the modeling was performed with a 100 m long and 100 m wide rectangular shaped glass house having an area of 1ha ($10,000m^2$) using EnergyPlus software. The heat sources considered were air source, geothermal heat, power plant waste heat, sea water heat, and river water. The temperature variation of the fluid with regard to pipe material and distance from the heat source and the resultant heat pump electricity consumptions were calculated. It turned out that the fluid temperature reaching the heat pump increased as the distance from the heat source increased in case of sea water and river water, which have higher temperatures than the surrounding soil, improving the heat pump efficiency. It was vice versa in case of the power plant waste heat. In addition, pipe material of PVC showed the smallest effect on the system performance variation due to the lowest thermal conductivity, compared to PB and HDPE.