Development of Tribo-electrostatic Separation Technique for Scale-up Process of Heavy Group Plastic Tailings

고비중(高比重) 종말품(終末品) 폐(廢)플라스틱 대량처리(大量處理)를 위한 마찰하전(摩擦荷電) 정전선별(靜電選別) 기술개발(技術開發)

  • 박철현 (한국지질자원연구원 광물자원연구본부) ;
  • 전호석 (한국지질자원연구원 광물자원연구본부) ;
  • 백상호 (한국지질자원연구원) ;
  • 김병곤 (한국지질자원연구원 광물자원연구본부)
  • Published : 2009.04.27

Abstract

In this research, we studied the scale-up triboelectrostatic process for separation of PVC from higher gravity fraction of plastic wastes produced from wet gravity separation process. High density polyethylene (HDPE) was found to be the most effective materials for a tribo-charger in the separation of plastic tailings. In a commercial scale triboelelctrostatic separator unit, using the HDPE pipe-line charger, a grade of 99.1% with PET, PS and others and a recovery of 86% was obtained under optimum conditions at over 250 kV/m electric field, a splitter position of -8 cm from the center, and less than 40% relative humidity. The developed unit can process the plastic wastes at a 300 kg/h, and the product can be utilized as RPF or RDF of over grade 2.

습식 비중선별에서 sink products로 회수된 종말품 고비중 폐플라스틱 산물의 재활용을 위한 마찰하전정전선별 실증화 연구를 수행하였다. 종말품 고비중 폐플라스틱의 재질분리에 있어 적합한 하전물질 선정을 위한 하전특성 연구결과, high density polyethylene (HDPE)재질이 가장 효과적인 하전물질로 규명되어, 이 재질을 이용하여 하전장치를 제작하였다. 실험결과 최적조건인 전극의 전기장 250 kV/m, 분리대의 위치 (-) 8 cm, 그리고 상대습도 40%이하에서 PET, PS and others 산물의 품위와 회수율이 각각 99.1%와 86.0%인 결과를 얻었다. 또한 300 kg/h 규모의 대량처리 기술을 개발하여 종말품 폐플라스틱을 2등급 이상의 RPF나 RDF로 재활용할 수 있는 즉, PVC를 1% 미만을 줄일 수 있는 선별기술을 개발하였다.

Keywords

References

  1. R. Koehnlechner, 2001 : Recycling of cable residues, WAI 71st Annual Convention, Atlanta, GA USA
  2. S. Zhang, and E. Forssberg, 1997 : Mechanical separation-oriented characterization of electronic scrap, Resour. Conserv. Recy., Vol. 21, pp. 247-269 https://doi.org/10.1016/S0921-3449(97)00039-6
  3. H. M. Veit and et aI., 2006 : Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy, J. Hazard. Mater., Vol. 137, pp. 1704-1709 https://doi.org/10.1016/j.jhazmat.2006.05.010
  4. B. T. Simoneit, and et aI., 2003 : Combustion products of plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Technol., Vol. 37, pp. 652-656 https://doi.org/10.1021/es025771c
  5. M. F. Ali, and M. N. Siddiqui, 2005 : Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue, J. Anal. Appl. Pyrol., Vol. 74, pp. 282-289 https://doi.org/10.1016/j.jaap.2004.12.010
  6. R. H. Yoon, 2002 : Recent development in plastics recycling in the U.S., Processing International Symposium on Establishment of Recsour. Recy. Soc., October1-2, Seoul, Korea
  7. 전호석, 박철현, 김병곤, 박재구, 2006: 생활계 폐플라스틱 재활용을 위한 정전선별 기술개발, 한국자원리싸이틀링학회지, Vol. 15, pp. 28-36
  8. C. H. Park, H. S. Jeon, and J. K. Park, 2007 : PVC removal from mixed plastics bytriboelectrostatic separation, J. Hazard. Mater., Vol. 144, pp. 470-476 https://doi.org/10.1016/j.jhazmat.2006.10.060
  9. L. W. Reid, 1996 : Plastic incineration versus recycling: a comparison of energy and landfill cost savings, J. Hazard. Mater., Vol. 47, pp. 295-302 https://doi.org/10.1016/0304-3894(95)00117-4
  10. K. S. Rebeiz, and A. P. Craft, 1995 : Plastic waste management in construction: technological and institutional issues, Resour. Conserv. Recy., Vol. 15, pp. 245-257 https://doi.org/10.1016/0921-3449(95)00034-8
  11. G. Dodbiba, and et aI., 2005 : The use of air tabling and triboelectric separation for separating a mixture of three plastics, Miner. Eng., Vol. 18, Issue 15, pp. 1350-1360 https://doi.org/10.1016/j.mineng.2005.02.015
  12. X. Hu, and J. M. Calo, 2006 : Plastic particle separation via liquid-fluidized bed classification, AIChE. J., Vol. 52, No.4, pp. 1333-1342 https://doi.org/10.1002/aic.10721
  13. H. Shent, and R. J. Pugh, 1999 : A review of plastics waste recycling and the flotation of plastics, Resour. Conserv. Recy., Vo. 25, pp.85-109 https://doi.org/10.1016/S0921-3449(98)00017-2
  14. P. Tatzer, and M. Wolf, 2005 : Industrial application for in line material sorting using hyperspectral imaging in the NIR range, Real-Time Imaging, Vol. 11, pp. 99-107 https://doi.org/10.1016/j.rti.2005.04.003
  15. E. G Kelly, and D. J. Sottiswood, 1988 : The theory of electrostatic separations: a Review, Part., Fundamentals, Miner. Eng., Vol.2, No.1, pp. 33-46 https://doi.org/10.1016/0892-6875(89)90063-0
  16. M. Lungu, 2004 : Electrical separation of plastic materials using the triboelectric effect, Miner. Eng., Vol. 17, pp. 69-75 https://doi.org/10.1016/j.mineng.2003.10.010
  17. H. B. Michaelson, 1977 : The work function of the elements and its periodicity, J. Appl. Phys., Vol. 48, No. 11, pp. 4729-4733 https://doi.org/10.1063/1.323539
  18. 박철현, 전호석, 박재구, 2006 : 마찰하전에 의한 플라스틱의 하전특성 및 대전서열 정립에 관한 연구, 한국지구시스템공학회지, Vol. 43, No. 6, pp. 1-10
  19. 박철현, 2007 : 마찰하전 정전선별법에 의한 혼합플라스틱의 하전특성 및 분리효율에 관한 연구, 박사학위논문, 한양대학교
  20. H. W. Gibson, 1984 : Control of electrical properties of polymers by chemical modification, Polymer, Vol. 25, January, pp. 3-27 https://doi.org/10.1016/0032-3861(84)90263-5
  21. S. R. Woodhead, and D. I. Armour-Chelu, 2003 : The influence of humidity, temperature and other variables on the electric charging characteristics of particulate aluminium hydroxide in gas-solid pipelines flows, J. Electrost., Vol. 58, pp. 171-183 https://doi.org/10.1016/S0304-3886(03)00046-9
  22. T. Nomura, T. Satoh, and H. Masuda, 2003 : The environment humidity effect on the tribo-charge of powder, Powder Technology, Vol. 135-136, pp. 43-49 https://doi.org/10.1016/S0032-5910(03)00157-8