• Title/Summary/Keyword: HDD slider

Search Result 78, Processing Time 0.022 seconds

Study on Scratch Reduction of HDD using Rounded-edge Slider (Rounded-edge 슬라이더를 이용한 하드디스크의 표면 스크래치 저감에 관한 연구)

  • Shin, Il-Sup;Kim, Young-Tae;Han, Je-Hee;Kim, Dae-Eun;Kang, Tae-Sik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.184-188
    • /
    • 2006
  • In recent years the flying height of the head/slider has been decreasing in order to increase the recording density of hard disk drive (HDD). Accordingly, it was predicted that direct contact between slider and disk surface (slider slap) can cause defects on the disk such as scratch and particle generation. In this work, we theoretically demonstrate the effect of rounded-edge slider using Hertzian contact theory. Depth and width of scratch were predicted by plowing model. Furthermore, as we fabricated rounded-edge slider, rounded-edge slider was tested and compared with sharp-edge slider. The experimental results show rounded-edge was effective for reducing scratch depth.

  • PDF

Study on the Flying Stab3B3ty of the FEMTO(20%) Slider (FEMTO(20%) 슬라이더의 부상안정성 고찰)

  • 강태식;이철우;조긍연;정재명;정준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.887-887
    • /
    • 2004
  • The areal density of the hard disk drive(HDD) has been increased due to technological advances recently. To achieve the high areal density magnetic recording requires an extremely small gap between the air-bearing surface (ABS) and disk. At the same time, the slider mass and size should be reduced to minimize the physical contact under the operational and environmental conditions. Almost all of 2.5"HDD companies will get ready for adoption of FEMTO slider and already utilized the small slider. FEMTO and small size slider will be mainstream in the 2.5" and other small form factor HDD in the near future. In this study, the flying characteristic of FEMTO slider was examined. Based on the simulation, FEMTO slider is very stable in flying dynamic under the disk modulation, however the flying height sensitivity of the manufacturing tolerances is much bigger than PICO slider. And the other characteristics like impulse response and load/unload dynamic were also examined in this study.tudy.

  • PDF

A Numerical Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.146-153
    • /
    • 1999
  • A numerical dynamic simulation is necessary to investigate the capacity of the HDD. The slider surface become more and more complicated to make the magnetized area smaller and readback signal stronger. So a numerical dynamic simulation must be preceded to develop a new slider in HDD. The dynamic simulations of air-lubricated slider bearing have been peformed using FIFD(Factored Implicit Finite Difference) method. The governing equation, Reynolds equation Is modified with Fukui and Kaneko model(FK model) which includes the first and the second-order slip. The equations of motion for the slider bearing are solved simultaneously with the modified Reynolds equation for the case of three degrees of freedom. The slider transient response for disk step bump and slider impulse force is given for various case and for iteration algorithm and new algorithm.

  • PDF

Particle Generation Trend with Variation of Rest Time and Seek Mode in Hard Disk Drive Operation (하드디스크 드라이브의 슬라이더 구동정지 기간 및 검색조건 변화에 따른 입자 발생 경향)

  • Park, Hee-Sung;Hwang, Jung-Ho;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1056-1061
    • /
    • 2000
  • Particles existing in a hard disk drive are known as a major source of TA(thermal asperity). Researchers have investigated how particles induce the TA phenomena, but have not verified yet the reason why and how particles are generated in a HDD. The objective of this study is to investigate why and how particles are generated, and in what condition, the largest number of particles is generated. The number of particles generated in a HDD was measured over the landing zone after various rest times of slider and during various motions and positions of slider. It is found that the large number of particles was generated when the HDD was turned on after a long rest time of slider and that a few of particles were continuously generated when the slider flied over the disk surface. It is thought that the number of particles generated in a HDD was related to the rest time of slider because the rest time of slider increased stiction, and that there were intermittent contacts between the slider and the disk surface when the slider flied over the disk surface.

Study on wear characteristics of commercialized HDD slider pad (상용 하드디스크 슬라이더 패드의 마모 특성에 관한 연구)

  • Jang, Cheol-Eun;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.139-143
    • /
    • 2007
  • In recent years new recording media and materials for head-disk interface (HDI) have been developed in order to increase the recording density of storage devices and decrease the cost of production. It is well known that HDI in hard disk drive (HDD) needs high durability and stability. The tribological characteristic of commercialized HDI systems is an important indicator of the HDD reliability. In this study, experimental investigation on the wear coefficient of commercialized hard disk slider pads was performed. The slider was placed on top of a hard disk and allowed to slide for a set distance. The wear of the pads was measured after the sliding tests. The result showed that the micro-bumps in commercialized HDD have extremely low wear coefficient of $10^{-11}$. The results of this work may be used for further development of the HDI technology for HDD.

  • PDF

Tribological Induced Dynamic Characteristics Analysis of HDD Slider-Suspension Assembly (트라이볼로지 문제를 고려한 하드 디스크 슬라이더-서스펜션의 동특성 해석)

  • 김청균;차백순
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2001
  • This paper presents dynamic responses of disk flutter and bump in HDD slider. The slider is modeled for three degree-of-freedom systems, which are capable of lifting, pitching, and rolling motions. In numerical analysis, loads from air pressure, preload and static moments from the slider, and stiffness and damping coefficients of the suspension are considered for investigating the dynamic characteristics analysis. The numerical results are presented as functions of typical parameters such as a disk velocity, stiffness and damping coefficients of the suspension, and skew angle.

Experimental Analysis of Tribological Performances of Padder Slider in HDD (하드 디스크 드라이브용 패드 슬라이더의 트라이볼로지 특성에 관한 실험적 연구)

  • 홍수열;좌성훈;고정석;이형재
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.312-320
    • /
    • 2001
  • In magnetic hard disk drives, higher areal recording density requires reduction of head-disk spacing. To overcome the increase of stiction associated with reduction of head-disk spacing, a padder slider, which adds pads to slider's air bearing surface, can be one of the practical solution for sub 20 nm flying height, and even for near contact recording. This study investigated the tribological characteristics of a padder slider. A padder slider took off slowly but showed less friction force than a normal slider. The hot/dry CSS test and drag test indicated that pad wear of a padder slider was negligible. The tribological performance of disk is an important factor to be considered. In particular, less carbon overcoat layer of the disk will result in higher stiction and wear in slider/disk interface. In conclusion, a padder slider shows encouraging tribological performances for practical use in HDD.

Surface Failure Phenomenon Due to Head/Disk Contact (헤드/디스크의 접촉으로 인한 표면파손 현상)

  • Chung, Koo-Hyun;Moon, Jae-Taek;Lee, Jung-Kyu;Kim, Dae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.322-326
    • /
    • 2001
  • Hard disk drive(HDD) consists of a head/slider system which flies over the magnetic disk at an extremely low height. As the density of HDD increases the flying height of the head needs to be decreased. This increases the chance for contact between the slider and the disk. This paper addresses some key issues related to surface failure characteristics of HDD. It is shown that flying behavior of the slider during contact-start-stop cycle can be analyzed based on different regimes of air film lubrication, experimental methods for identifying the underlying mechanisms and improving the reliability of HDD are discussed.

  • PDF

Dynamic Characteristics of HDD Slider by Perturbated Direct Numerical Method

  • Khan Polina V.;Hwang Pyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.210-214
    • /
    • 2003
  • The static and dynamic characteristics of HDD slider with ulta-low flying height are analyzed using Direct Numerical method with Boundary Fitted Coordinate System. The slip flow effect is considered using the Boltzmann equation solution in a form of the flow rate database. The air film stiffness and damping are evaluated by the small perturbation method.

  • PDF

Friction Heating Effect Considering Contact Area in TFC slider (슬라이더-디스크 접촉 영역에서의 마찰열에 의한 영향 연구)

  • Choi, Jonghak;Yoon, Joo Young;Park, Young-Pil;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2015
  • In HDD industry, many technologies have been developed and investigated as means to increase the areal density of drives. Thermal flying-height control has been considered and widely applied in current HDD. When contact occur between TFC slider and disk, the slider has a friction heating induced by highly rotated disk. Moreover, because of the friction heating, additional protrusion of slider can occur. The additional protrusion in contact situation can be a severe effect on head part of slider and disk. Therefore, in this paper, we analyze the friction heating and additional protrusion in contact situation.