• Title/Summary/Keyword: HCV core

Search Result 22, Processing Time 0.035 seconds

Expression and Characterization of Hepatitis C Virus Core Proteins: Effects of Single Amino Acid Substitution on Protein Conformation and Subcellular Localization

  • Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.281-286
    • /
    • 1998
  • Hepatitis C virus (HCV) core proteins from two different isolates (HCV-1 and HCV-RH) were expressed in Spotioptera Jrugiperda (Sf9) insect cells. The RH core consisted of two major species of proteins (21 kDa and 19 kDa). On the other hand, the HCV-1 core was approximately 16 kDa in a SDS-PAGE gel. Both core proteins were phosphorylated in vivo on serine residues. Furthermore, the RH core but not HCV-1 core formed dimers, indicating that the protein conformation of the core in these two isolates is dfferent from one another. Immunofluorescence studies showed that the RH core was present in the cytoplasm, whereas the HCV-1 core was localized predominantly to the nucleus in recombinant baculovirus-infected insect cells. Since the major difference between the two isolates is the codon 9 of the core protein, a single amino acid substitution appears to play a major role in the protein conformation and these properties may reflect the different biological functions of core proteins in HCV-infected cells.

  • PDF

Hepatitis C Virus Core Protein Is Efficiently Released into the Culture Medium in Insect Cells

  • Choi, Soo-Ho;Kim, So-Yeon;Park, Kyu-Jin;Kim, Yeon-Joo;Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.735-740
    • /
    • 2004
  • Hepatitis C virus (HCV) is a causal agent of the chronic liver infection. To understand HCV morphogenesis, we studied the assembly of HCV structural proteins in insect cells. We constructed recombinant baculovirus expression vectors consisting of either HCV core alone, core-E1, or core-E1-E2. These structural proteins were expressed in insect cells and were examined to assemble into particles. Neither core-E1 nor core-E1-E2 was capable of assembling into virus-like particles (VLPs). It was surprising that the core protein alone was assembled into core-like particles. These particles were released into the culture medium as early as 2 days after infection. In our system, HCV structural proteins including envelope proteins did not assemble into VLPs. Instead, the core protein itself has the intrinsic capacity to assemble into amorphous core-like particles. Furthermore, released core particles were associated with HCV RNA, indicating that core proteins were assembled into nucleocapsids. These results suggest that HCV may utilize a unique core release mechanism to evade the hosts defense mechanism, thus contributing to the persistence of HCV infection.

Suppression of Ceramide-induced Cell Death by Hepatitis C Virus Core Protein

  • Kim, Jung-Su;Ryu, Ji-Yoon;Hwang, Soon-Bong;Lee, Soo-Young;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2004
  • The hepatitis C virus (HCV) core protein is believed to be one of viral proteins that are capable of preventing virus-infected cell death upon various stimuli. But, the effect of the HCV core protein on apoptosis that is induced by various stimuli is contradictory. We examined the possibility that the HCV core protein affects the ceramide-induced cell death in cells expressing the HCV core protein through the sphingomyelin pathway. Cell death that is induced by $C^2$-ceramide and bacterial sphingomyelinase was analyzed in 293 cells that constitutively expressed the HCV core protein and compared with 293 cells that were stably transfected only with the expression vector. The HCV core protein inhibited the cell death that was induced by these reagents. The protective effects of the HCV core protein on ceramide-induced cell death were reflected by the reduced expression of $p21^{WAF1/Cip1/Sid1}$ and the sustained expression of the Bcl-2 protein in the HCV core-expressing cells with respect to the vector-transfected cells. These results suggest that the HCV core protein in 293 cells plays a role in the modulation of the apoptotic response that is induced by ceramide. Also, the ability of the HCV core protein to suppress apoptosis might have important implications in understanding the pathogenesis of the HCV infection.

Induction of Interleukin-8 Expression in Synovial Cell by Hepatitis C Virus Core Protein (활막 세포에서 HCV Core 단백에 의한 Interleukin-8 발현 유도)

  • Wang, Jin-Sang;Her, Won-Hee;Kim, So-Yeon;Yoon, Seung-Kew
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2006
  • Background: Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease that is characterized by invasive synovial hyperplasia, leading to progressive joint destruction. Recent studies have described that RA is caused by virus, bacteria or outside material. Approximately 2 to 20% of RA cases arc reported to be associated with infected hepatitis C virus (HCV). However, the mechanisms underlying virus-induced RA are still unknown. Moreover, few molecular studies have addressed the inflammatory aspects of HCV-associated autoimmune RA. In this study, we aimed to determine whe ther or not another HCV core protein transactivates the IL-8 gene expression, prototypic chemokine, in synovial cell. Methods: To establish the HCV core expressing stable synovial cell line, pCI-neo-core, a plasmid encoding HCV core protein, were transfected to HIG-82 cell line that is an established cell line from rabbit periaricular soft tissue. We examined the morphological changes and cell cycle distribution of HIG-82 cells with expression of HCV core protein by inverted microscopy and flow cytometry analysis, respectively. Also, we determined the mRNA levels of Interleukin (IL)-6 and IL-8 related to the inflammation by RT-PCR and then analyzed regulation of IL-8 expression by the NF-${\kappa}B$ pathway. Results: Our study showed no significant differences in morphology and cell cycle between HIG-82 control cell line and HIG-82 expressing HCV core protein. However, expression of HCV core protein induces the IL-8 mRNA expression in HIG-82 core cells via activated NF-${\kappa}B$ pathway. Conclusion: These results suggest that HCV core protein can lead to enhanced IL-8 expression. Such a proinflammatory role may contribute to the etiologic pathogenesis in RA patients with HCV infection.

Differential Expression of HCV Core Protein from Two Different Quasispecies

  • Yu, Kyung-Lee;You, Ji-Chang
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.151-155
    • /
    • 2009
  • Hepatitis C virus (HCV) has genetic diversity like most of RNA viruses. HCV major genotypes are classified into several subtypes which are further divided into quasispecies having, genetically different but closely related variants. The HCV core that is a nucleocapsid protein located at the amino terminus of the viral polyprotein is relatively a conserved protein among the HCV isolates and thus it has been one of plausible targets for anti-HCV drug development. However, different quasispecies of HCV core gene have also been found. In this study, we compared the expression level of core protein between two different quasispecies of HCV genotype 1b. Our data demonstrate that a little differences of amino acid sequence lead to substantial difference of expression level. It might be another important reason of different pathogenesis among HCV infected patients.

Interaction of Hepatitis C Virus Core Protein with Janus Kinase Is Required for Efficient Production of Infectious Viruses

  • Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif ($^{79}{\underline{P}}GY{\underline{P}}WP^{84}$). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif ($^{79}{\underline{A}}GY{\underline{A}}WP^{84}$) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.

Hepatitis C Virus Core Protein Sensitizes Cells to Apoptosis Induced by Anti-Cancer Drug

  • Kang, Mun-Il;Mong Cho;Kim, Sun-Hee;Kang, Chi-Dug;Kim, Dog-Wan
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.90-96
    • /
    • 1999
  • The core protein of the hepatitis C virus (HCV) is a multifunctional protein. The HCV core protein was reported to regulate cellular gene expression and transform primary rat embryo fibroblast cells. However, the role of the core protein in the pathogenesis of HCV-associated liver diseases is not well understood. To investigate the functional role of the core protein in cytophathogenicity, we have constructed stable expression systems of full length or truncated HCV core protein lacking the C-terminal hyderophobic domains and established HepG2 cell clones constitutively expressing the core protein. The full length core protein was localized in the cytoplasm and the C-terminal truncated core protein was localized in the nucleus. HepG2 cells expressing nuclear, truncated core protein showed elevated cell death during cultivation compared to untransfected cells and full length core-expressing cells. In the treatment with bleomycin, both cell clones expressing full length or truncated core protein appeared to be more sensitive to blemoycin than the parental HepG2 cells. These results suggest that the core protein may play a role in HCV pathogenesis promoting apoptotic cell death of infected cells.

  • PDF

Cooperative stimulation of cisplatin-mediated apoptosis by hepatitis B virus X Protein and hepatitis C virus core Protein (B형 간염 바이러스 X 단백질과 C형 간염 바이러스의 코어 단백질에 의한 cisplatin-매개성 세포 예정사의 협조적 촉진)

  • Kwun, Hyun-Jin;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.766-771
    • /
    • 2007
  • The co-infection with hepatitis B virus (HBV) and hepatitis C Virus (HCV) is associated with a more severe liver disease and increased frequency in the development of hepatocellular carcinoma com-pared to those with single infection. Here, we demonstrated that HBV X protein (HBx) and HCV Core cooperatively up-regulated the level of p53 in human hepatoma HepG2 cells. The elevated p53 subsequently stimulated the expression of proapoptotic Bax whereas it repressed the expression of antiapoptotic Bcl2. These effects, however, were not observed in p53-negative Hep3B cells. Consistently to their cooperative regulation of apoptotic effectors, HBx and HCV Core additively stimulated cisplatin-mediated apoptotic cell death of HepG2 but not of Hep3B cells. These results may help to explain the development of a more severe liver disease in patients co-infection with HBV and HCV as well as some contradictory results on the roles of HBx and Core in apoptosis.

Identification of Hepatitis C Virus Core Domain Inducing Suppression of Allostimulatory Capacity of Dendritic Cells

  • Kim, Ho-Sang;Lee, Jae-Kwon;Yang, In-Ho;Ahn, Jeong-Keun;Oh, Yoon-I;Kim, Chul-Joong;Kim, Young-Sang;Lee, Chong-Kil
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.364-369
    • /
    • 2002
  • Hepatitis C virus (HCV) is remarkably efficient at establishing chronic infection. One of the reasons for this appears to be the suppression of the accessory cell function of professional antigen presenting cells. In the present study, the immunosuppressive activity of HCV protein was examined on dendritic cells (DCs) generated from mouse bone marrow progenitor cells in vitro. We found that the DCs forced to express HCV protein have defective allostimulatory ability. DCs expressing HCV protein were phenotypically indistinguishable from normal DCs. However, they were unable to produce IL-12 effectively when stimulated with lipopolysaccharide. The functional domain of the HCV protein essential for immunosuppression was determined using a series of ${NH_2}-and$ C-terminal deletion mutants of HCV core protein. We found that amino acid residues residing between the 21 st and the 40th residues from the ${NH_2}-terminus$ of HCV core protein are required for immunosuppression. These findings suggest that HCV core protein suppresses the elicitation of protective Th1 responses by the inhibition of IL-12 production by DCs.