• Title/Summary/Keyword: HBr formation

Search Result 14, Processing Time 0.028 seconds

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Characteristics of silicon etching related to $He-O_2,\; SiF_4$for trench formation (실리콘 트렌치 식각 특성에 미치는 $He-O_2,\; SiF_4$첨가 가스의 영향)

  • 김상기;이주욱;김종대;구진근;남기수
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.364-371
    • /
    • 1997
  • Silicon trench etching has been carried out using a magnetically enhanced reactive ion etching system in HBr plasma containing He-$O_2$, $CF_4$. The changes of etch rate and etch profile, the degree of residue formation, and the change of surface chemical state were investigated as a function of additive gas flow rate. A severe lateral etching was observed when pure HBr plasma was used to etch the silicon, resulted in a pot shaped trench. When He-$O_2$, $SiF_4$ additives were added to HBr plasma, the lateral etching was almost eliminated and a better trench etch profile was obtained. The surface etched in HBr/He-$O_2/SiF_4$ plasma showed relatively low contamination and residue elements compared to the surface etched in HBr/He-$O-2/CF_4$plasma. In addition, the etching characteristics including low residue formation and chemically clean etched surface were obtained by using HBr containing He-$O_2$ or $SiF_4$ additive gases instead of $CF_4$ gas, which were confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  • PDF

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

Characteristics of Amorphous Silicon Gate Etching in Cl2/HBr/O2 High Density Plasma (Cl2/HBr/O2 고밀도 플라즈마에서 비정질 실리콘 게이트 식각공정 특성)

  • Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • In this study, the characteristics of amorphous silicon etching for the formation of gate electrodes have been evaluated at the variation of several process parameters. When total flow rates composed of $Cl_2/HBr/O_2$ gas mixtures increased, the etch rate of amorphous silicon layer increased, but critical dimension (CD) bias was not notably changed regardless of total flow rate. As the amount of HBr in the mixture gas became larger, amorphous silicon etch rate was reduced by the low reactivity of Br species. In the case of increasing oxygen flow rate, etch selectivity was increased due to the reduction of oxide etch rate, enhancing the stability of silicon gate etching process. However, gate electrodes became more sloped according to the increase of oxygen flow rate. Higher source power induced the increase of amorphous silicon etch rate and CD bias, and higher bias power had a tendency to increase the etch rate of amorphous silicon and oxide.

Etching Characteristics of ZnO Thin Films Using Inductively Coupled Plasma of HBr/Ar/CHF3 Gas Mixtures (HBr/Ar/CHF3 혼합가스를 이용한 ZnO 박막의 유도결합 플라즈마 식각)

  • Kim, Moon-Keun;Ham, Young-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.915-918
    • /
    • 2010
  • In this work, the etching characteristics of ZnO thin films were investigated using an inductively coupled plasma(ICP) of HBr/Ar/$CHF_3$ gas mixtures. The plasma characteristics were analyzed by a quadrupole mass spectrometer (QMS) and double langmuir probe (DLP). The surface reaction of the ZnO thin films was investigated using X-ray photoelectron spectroscopy (XPS). The etch rate of ZnO was measured as a function of the $CHF_3$ mixing ratio in the range of 0-15% in an HBr:Ar=5:2 plasma at a fixed gas pressure (6mTorr), input power (700 W), bias power (200 W) and total gas flow rate(50sccm). The etch rate of the ZnO films decreased with increasing $CHF_3$ fraction due to the etch-blocking polymer layer formation.

A Study on the Polysilicon Etch Residue by XPS and SEM (XPS와 SEM을 이용한 폴리실리콘 표면에 형성된 잔류막에 대한 연구)

  • 김태형;이종완;최상준;이창원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.169-175
    • /
    • 1998
  • The plasma etching of polysilicon was performed with the HBr/$Cl_2/He-O_2$ gas mixture. The residual layers after photoresist strip were investigated using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The etch residue was identified as silicon oxide deposited on the top of the patterned polysilicon. In order to clarify the formation mechanism of the etch residue, the effects of various gas mixtures such as $Cl_2/He-O_2$and HBr/$Cl_2$were investigated. We found that the etch residue is well formed in the presence of oxygen, suggesting that the etch residue is caused by the reaction of oxvgen and non-volatile silicon halide compounds. Wet cleaning and dry etch cleaning processes were applied to remove the polysilicon etch residue, which can affect the electrical characteristics and further device processes. XPS results show that the wet cleaning is suitable for the removal of the etch residue.

  • PDF

Effect of Protonic Acids on the Reaction Rate in Chemical Polymerization of Polyaniline (폴리아닐린의 화학적 중합 시 반응속도에 미치는 양성자산의 영향)

  • Hong, Jang-Hoo;Jang, Beom Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.684-688
    • /
    • 2005
  • Aniline was polymerized in various protonic acid (HF, HC1, HBr, HI, $H_2SO_4$) aqueous solutions with different acidity. During the reaction, the dimer formation and the reaction rate were examined as functions of acidity (pH) and the size of counter ions. Open-circuit potential measurements were carried out to investigate the effect of protonic acid on the reaction rate. The results showed that polymerization rate in HF aqueous solution was very slow and polymerization did not occur in HI aqueous solution. These results were explained in terms of acidity and power of oxidation. The ratio of formation of dimers varied with the kind of protonic acid, and the results were explained with the nucleophilicity, solvation effect, and mobility of counter ions.

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF

RIE induced damage recovery on trench surface (트렌치 표면에서의 RIE 식각 손상 회복)

  • 이주욱;김상기;배윤규;구진근
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.120-126
    • /
    • 2004
  • A damage-reduced trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy, which was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $O_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching. To reduce the RIE induced damage and obtain the fine shape trench corner rounding, we investigated the hydrogen annealing effect after trench formation. Silicon atomic migration on trench surfaces using high temperature hydrogen annealing was observed with atomic scale view. Migrated atoms on crystal surfaces formed specific crystal planes such as (111), (113) low index planes, instead of fully rounded comers to reduce the overall surface energy. We could observe the buildup of migrated atoms against the oxide mask, which originated from the surface migration of silicon atoms. Using this hydrogen annealing, more uniform thermal oxide could be grown on trench surfaces, suitable for the improvement of oxide breakdown.

Effect of Uncoordinated Tertiary Nitrogen Atoms in Hexaaza Macrocyclic Nickel(II) Complexes on Axial Binding of Anions and Water in Acidic Solutions

  • 김성진;최장식;강실걸;김창수;백서병현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.217-221
    • /
    • 1995
  • Axial coordination of anions or water to the square-planar nickel(Ⅱ) complexes of the hexaaza macrocyclic ligands 1, 2, and 3, which contain two extra uncoordinated tertiary nitrogens, have been investigated in aqueous solutions containing HX (X=Cl-, Br-, NO3-, or ClO4-) and/or NaX. The nickel(Ⅱ) complexes exist in the acidic solutions as equilibrium mixtures of the square-planar [Ni(L)]2+ (L=1, 2, and 3) and octahedral species [Ni(H2L)X2]2+ (H2L=diprotonated form of L). Some octahedral complexes have been isolated and characterized. The solution behaviors of the complexes indicate that the formation of the octahedral complexes are significantly promoted by the protonation of the uncoordinated tertiary amines. The proportion of the octahedral complexes depends on the type of acid, and increases in the order of HBr < HNO3 < HCl.