• 제목/요약/키워드: HAp(Hydroxyapatite)

검색결과 148건 처리시간 0.021초

Biodegradable Hydroxyapatite/Chitosan Composites on the Bone Defect of Canine Model

  • Kim, Jooho;Lee, Dongbin;Heo, Suyoung;Kim, Namsoo
    • 한국임상수의학회지
    • /
    • 제34권6호
    • /
    • pp.410-413
    • /
    • 2017
  • Composites of hydroxyapatite (HAp) and chitosan (CS) have been successfully used in bone healing in humans and animals. However, the characteristics of HAp and CS are different. Therefore, the effects of HAp/CS composites on canine bone formation could differ according to their ratio. This study investigated the therapeutic effects of different contents ratios (100, 80:20, 60:40 wt%) on bone defects in a canine model. Thirty intrabony cylindrical defects were created in the humeruses and femurs of 5 beagle dogs, and then the defects were implanted with different composites. The evaluations were performed using radiographs obtained at 10 weeks post-surgery and by histological findings. In radiographic evaluation including the grades of bone filling, periosteal and endosteal reactions, pure hydroxyapatite composite had a significant effect on bone filling, and chitosan containing the composites showed vigorous responses at the periosteum and endosteum. In histological findings, the defect implanted with pure hydroxyapatite had healed completely into mature bony tissue with an obvious osteon structure, and the defect implanted with chitosan containing the composites had the amount of fibrous connective tissue increased significantly within the cortical bone tissue. The results indicate that hydroxyapatite/chitosan composites are therapeutically useful, promoting effective bone healing in defects when the ratio of hydroxyapatite is high and enhanced fibrous connective tissue formation at the periosteum as more chitosan is added.

수산화아파타이트와 지르코니아의 경사기능 재료의 제조 (Fabrication of functionally graded materials of hydroxyapatite and zirconia)

  • 김성진;조경식;박노진
    • 한국결정성장학회지
    • /
    • 제11권3호
    • /
    • pp.115-119
    • /
    • 2001
  • 수산화아피타이트와 이트리아 부분 안정화된 지르코니아의 바를 달리하는 3층 구조를 가즌ㄴ 생체 재료용 경사기능재료(FGMs)를 spark plasma sintering(SPS)과 hot pressing(HP) 장비로 제조하였다. HAp 원료에 대한 전처리를 실시할 경우 HAp의 소결성이 개선되었다. 전처리하여 얻은 FGM 복합체의 최고밀도는 전처리하지 않은 FGM 보다 낮은 온도에서 얻을 수 있었다. SPS로 FGM 소결체를 제조할 경우 10 MPa의 가압조건에서 8분 동안 소결 할 경우, $1200^{\circ}C$의 온도에서도 HAp의 TCP로의 분해 반응은 일어나지 않았으나. 이 온도에서 FGm의 지르코니아는 정방정에서 압방정으로와 상변화가 일어났다. 지르코니아 첨가에 따라. 즉 지르코니아의 응력 유기 상전이에 의해, HAp-ZrO$_2$ FGm 소결체의 기계적 물성이 증진된 것으로 예산된다. 치밀하고 고강도의 FGM을 제조하는 방법으로서 SPS가 HP공정에 비해 우수한 것으로 나타났다.

  • PDF

Modification of Hydroxyapatite/gelatin Nanocomposite with the Addition of Chondroitin Sulfate

  • Chang, Myung-Chul
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.573-578
    • /
    • 2008
  • In the preparation of hydroxyapatite(HAp)/gelatin(GEL) nanocomposite, GEL matrix was modified by the introduction of chondroitin sulfate(ChS) to obtain a strongly organized composite body. The formation reaction of the HAp/GEL-ChS nanocomposite was then investigated via XRD, DT/TGA, FT-IR, TEM and SEM. The organic-inorganic interaction between HAp nanocrystallites and GEL molecules was confirmed from DT/TGA and FT-IR. According to the DT/TGA results, the exothermal temperature zone between 300 and $550^{\circ}C$ showed an additional peak temperature that indicated the decomposition of the combined organics of the GEL and ChS. From the FT-IR analysis, calcium phosphate(Ca-P) was covalently bound with the GEL macromolecules modified by ChS. From TEM and ED, the matrix of the GEL-ChS molecules was mineralized by HAp nanocrystallites and the dense dried nanocomposite body was confirmed from SEM micrographs.

pH, 온도 및 시간이 수산화인회석의 합성에 미치는 영향 (THE EFFECTS OF pH, TEMPERATURE AND TIME ON THE SYNTHESIS OF HYDROXYAPATITE)

  • 이희주;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.27-44
    • /
    • 1994
  • The purpose of this study was to determine the effects of pH, temperature and time on the synthesis of hydroxyapatite(HAP) by spontaneous precipitation under relatively physiologic condition. Specimens were obtained from aqueous system with various pH, temperature and experimental time. Chemical composition, crystallographic structure and crystallinity of the synthetic HAP were evaluated by Infrared spectroscopy and powdered X-ray diffraction method. The following results were obtained. 1. No precipitate was obtained under pH 5.5. 2. All the specimens were concluded as HAP except one that was obtained under the condition of pH 6.5, $25^{\circ}C$ and 1 day. It was concluded as dicalcium phosphate dihydrate(DCPD). 3. The crystallinity of HAP was enhanced by increases in pH, temperature and time of the preparation. But, the crystallinity of the synthetic HAP was lower than that of the mineral HAP. 4. Intermediates such as DCPD and octacalcium phosphate were formed on the process of the synthesis of HAP.

  • PDF

Hydroxyapatite-Zirconia Composite Thin Films Showing Improved Mechanical Properties and Bioactivity

  • Kim, Min-Seok;Ryu, Jae-Jun;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.85-89
    • /
    • 2009
  • Nano-crystalline hydroxyapatite (HAp) films were formed at the Ti surface by a single-step microarc oxidation (MAO), and HAp-zirconia composite (HZC) films were obtained by subsequent chemical vapor deposition (CVD) of zirconia onto the HAp. Through the CVD process, zero- and one-dimensional zirconia nanostructures having tetragonal crystallinity (t-ZrO2) were uniformly distributed and well incorporated into the HAp crystal matrix to form nanoscale composites. In particular, (t-$ZrO_2$) was synthesized at a very low temperature. The HZC films did not show secondary phases such as tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) at relatively high temperatures. The most likely mechanism for the formation of the t-$ZrO_2$ and the pure HAp at the low processing temperature was proposed to be the diffusion of $Ca^{2+}$ ions. The HZC films showed increasing micro-Vickers hardness values with increases in the t-$ZrO_2$ content. The morphological features and phase compositions of the HZC films showed strong dependence on the time and temperature of the CVD process. Furthermore, they showed enhanced cell proliferation compared to the $TiO_2$ and HAp films most likely due to the surface structure change.

Enhanced Bone-Regenerative Performance of Porous Hybrid Scaffolds by Surface Immobilization of Nano-Hydroxyapatite

  • 이상천
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • Nano-hydroxyapatite (N-HAp)has shown the pivotal role in producing bone-regenerative materials since it has similarity to natural bone minerals in terms of size, morphology, and the composition. Currently, the combination of biopolymers and N-HAp is recognizedas an attractive approach in generating hybrid scaffolds for bone tissueengineering. Surface engineering is an important issue since it determines whether cells can effectively adhere and proliferate on porous scaffolds. We aim to develop a synthetic approach to porous 3D scaffolds by immobilizing N-HAp on pore surfaces. The discrete nano-level anchoring of N-HAp on the scaffold pore surface is achieved using surface-repellent stable colloidal N-HAp with surface phosphate functionality. This rational surface engineering enables surface-anchored N-HAp to express its overall intrinsic bioactivity,since N-HAp is not phase-mixed with the polymers. The porous polymer scaffolds with surface-immobilized N-HAp provide more favorable environments thanconventional bulk phase-mixed polymer/N-HAp scaffolds in terms of cellular interaction and growth. In vitro biological evaluation using alkalinephosphatase activity assay supports that immobilized N-HAp on pore surfaces of polymer scaffolds contributed to the more enhanced in vitro osteogenicpotential. Besides, the scaffolds with surface-exposed N-HAp provide favorable environments for enhanced in vivo bone tissue growth, estimated by characteristic biomarkers of bone formation such as collagen. The results suggest that newly developed hybrid scaffolds with surface-immobilized N-HApmay serve as a useful 3D substrate with pore surfaces featuring excellent bonetissue-regenerative properties. Acknowledgement. This research was supported by a grant (code #: 2009K000430) from 'Center for Nanostructured Materials Technology' under '21st Century Frontier R&D Programs' of the Ministry of Education, Science and Technology, Korea.

  • PDF

의사체액에서 수산화아파타이트의 결정성에 따른 분해거동 (Degradation Behavior of Hydroxyapatite with Different Crystallinity in Simulated Body Fluid Solution)

  • 진형호;김동현;김태완;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.347-351
    • /
    • 2011
  • Hydroxyapatite (HAp) powders with different crystallinities were synthesized at various calcination temperatures through the co-precipitation of $Ca(OH)_2$ and $H_3PO_4$. The degradation behavior of these HAp powders with different crystallinities was assessed in a simulated body fluid solution (SBF) for 8 weeks. Below $800^{\circ}C$, the powders were nonstochiometric HAp, and the single HAp phase was successfully synthesized at $800^{\circ}C$. The degree of crystallinity of the HAp powders increased with an increasing calcination temperature and varied in a range from 39.6% to 92.5%. In the low crystallinity HAp powders, the Ca and P ion concentrations of the SBF solution increased with an increasing soaking time, which indicated that the low crystallinity HAp degraded in the SBF solution. The mass of the HAp powders linearly decreased with respect to the soaking time, and the mass loss was higher at lower crystallinities. The mass loss ranged from 0.8% to 13.2% after 8 weeks. The crystallinity of the HAp powders increased with an increasing soaking time up to 4 weeks and then decreased because of HAp degradation. The pH of the SBF solution did not change much throughout the course of these experiments. These results suggested that the crystallinity of HAp can be used to control the degradation.

치아 내 수산화아파타이트(HAp) 삽입 후 미세구조에 관한 연구 (Study on the Microstructure of the Hydroxyapatite Injected into the Hole of Teeth.)

  • 류수착
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.786-789
    • /
    • 2004
  • Hydroxyapatite powder was injected into thehole of teeth. The microstructure of teeth and HAp were observed after immersed in $9\%$ salin solution at $37^{\circ}C$ from 1month to 6 months. The junction morphology of hydroxyapatite and tooth was enhanced and particle size of hydroapatite was decreased with increasing time. The firm waxy body was found due to the hardening of hydroxyapatite fine powder resulting from the destruction of initial powder with swelling. It is suggested that the junction morphology of hydroxyapatite and tooth was observed due to the $Ca^{2+}$ ion shift of hydroxyapatite.

Morphology Development of HAp Crystallites in GEL Matrix

  • Chang, Myung-Chul
    • 한국세라믹학회지
    • /
    • 제44권3호
    • /
    • pp.133-136
    • /
    • 2007
  • The crystal morphology of hydroxyapatite [HAp] phase in gelatin [GEL] matrices was investigated with the condition of a GEL precursor treatment in an aqueous solution of $H_{3}PO_{4}$ at $37-80^{\circ}C$. Needle-shaped nanocomposite particles were prepared through a dynamic reaction during a coprecipitation process using a phosphoric GEL solution. Various types of mineralized morphology appeared with a phosphorylated condition of the GEL solution. HAp/GEL nanocomposite slurries showed the existence of an octacalcium phosphate [OCP] phase during the process.

글리세롤 흡착으로 인산완충식염수에서 콜로이드 안정성이 향상된 수산화인회석 합성 (Adsorption of Glycerol on Hydroxyapatite Enhanced Colloidal Stability in Phosphate Buffered Saline Solution)

  • 안자운;최혜빈;이근영;권기영
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.670-673
    • /
    • 2023
  • 수산화인회석은 생체 적합성이 뛰어나 다양한 분야에 활용이 가능하다. 그 중 약물/유전자 전달과 같은 실용적인 생물학적 응용을 수행하기 위해 인산완충식염수(PBS) 용액 속 수산화인회석의 콜로이드 안정성은 특히 중요하다. 본 연구에서는 글리세롤 용액 하에 수산화인회석을 200 ℃로 열처리하여 글리세롤이 흡착된 수산화인회석(Gly-HAP)을 합성하였다. 이를 상온에서 합성한 수산화인회석(RT-HAP) 및 증류수에서 200 ℃로 열처리된 수산화인회석(H2O-HAP)과 물성 및 콜로이드 안정성을 비교하였다. 증류수와 글리세롤 용액 모두에서 열처리는 수산화인회석의 결정성을 향상시켰다. 하지만 글리세롤에 대한 수산화인회석의 낮은 용해도와 수산화인회석 표면에 글리세롤 분자들의 흡착으로 인해 열처리 과정에서 Gly-HAP의 결정 성장이 제한되었다. 반면에 H2O-HAP는 초기 결정 크기에 비해 약 4배 성장하였다. RT-HAP 및 H2O-HAP과 비교하면, Gly-HAP는 PBS 용액에서 콜로이드 안정성이 향상되었으며, 이는 글리세롤이 수산화인회석 표면에 흡착되어 HAP 결정들의 응집을 억제한 것에 기인한다.