• Title/Summary/Keyword: HAWT (horizontal axis wind turbine)

Search Result 58, Processing Time 0.024 seconds

A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code (풍력 발전기용 블레이드 공력해석에 대한 연구)

  • Park, Sang-Gyoo;Kim, Jin-Bum;Yeo, Chang-Ho;Kim, Tae-Woo;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF

Development of the Furling Control Type Small Wind Turbine System (과풍속 출력 제한형 소형 풍력 발전장치 개발)

  • Choi, Young-Chul;Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Han, Young-Oun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.693-701
    • /
    • 2012
  • In this study, a small wind turbine airfoil specialized for national wind condition was designed in order to develop the furling control type HAWT. And then a flow analysis was carried out based on the blade drawing which was designed to characterize of the developed airfoil. The result of the flow analysis showed that the torque on the 3 blades was 180.23N.m. This is equivalent to an output power of 5.66kw and an output efficiency of 0.44. Then we produced and constructed a 3kW - furling control type HAWT by getting the system unit design technology such as the specialized furling control device. By operating this turbine, we could get 3kW of the rated power at a wind speed of 10.5m/s through the ability test. Cut-in wind speed was 2m/s, generator efficiency was 92% at the rated power output. Sound power level was 87.2dB(A). Also we observed that the output power was limited to 10.5m/s with furling system operation.

A Study on Evaluation for the Applicatioin of a CFD Code to Flow Analysis and an Estimate of Performance for HAWT (수평축 풍력발전용 터빈의 유동해석 및 성능예측에 대한 CFD의 적용성 평가에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kim, You-Taek;Nam, Chung-Do;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2192-2197
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TV-Delft. The CFD results of which is somewhat consist with BEM results, under an error less than 10%.

  • PDF

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF

A Study on Aerodynamic Analysis and Design of Wind Turbine Blade (풍력터빈용 날개 설계 및 공력해석에 관한 연구)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Nam, Cheong-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Lee, Young-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.38-42
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT [Horizontal Axis Wind Turbine] was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW[FIL-20] at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

Analysis of Fluid Structure Interaction on 100kW-HAWT-blade (100kW용 풍력발전기의 블레이드에 대한 유동/구조 연성해석)

  • Kim Yun-Gi;Kim Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF