• Title/Summary/Keyword: H2 energy

Search Result 6,765, Processing Time 0.038 seconds

Interfacial Electrical Studies on Adhesion of Hematite Particle to Polyester Fabric and its Removal from the Fabric(Part I) -The interaction energy between particle and fabric- (Polyester직물에의 Hematite입자의 부착과 제거에 관한 계면전기적 고찰(제1보) -기질과 입자간의 상호작용에너지-)

  • Kang, In-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.380-390
    • /
    • 1993
  • Effect of interfacial electrical conditions on adhesion of ${\alpha}-Fe_2O_3$ particles to PET fabric and the removal of ${\alpha}-Fe_2O_3$ particles from PET fabric, were investigated as functions of pH, electrolyte and ionic strength. The ${\zeta}$ potential of PET fiber and ${\alpha}-Fe_2O_3$ particles in the electrolyte solution were measured by streaming potential and microelectrophoresis methods respectively. The potential energy of interaction between ${\alpha}-Fe_2O_3$ particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased with pH, and then decreased certain pH and isoelectric points of ${\alpha}-Fe_2O_3$ particles and PET fiber were pH 6.5 and pH 3.5, respectively. The negative ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber affected by electrolytes, were relatively high with polyanion electrolytes in solutions and were low with neutral salts. However, at surfactant solution, ${\zeta}$ potential was levelled off. The influence of the ionic strength on the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle was small but the negative ${\zeta}$ potential of PET fiber increased with the ionic strength. In the presence of anionic surfactant, the ${\zeta}$ potential of ${\alpha}-Fe_2O_3$ particle and PET fiber increased regardless of solution conditions. The interaction energy between ${\alpha}-Fe_2O_3$ particle and PET fabric increased with pH. The interaction energy was relatively high with polyanion electrolytes in solution, and the influence of ionic strength on the interaction energy was small, and the effective thickness of electrical double layer increased with decreasing the ionic strength.

  • PDF

Chlorination Reaction Behavior of Zircaloy-4 Hulls: A Preliminary Study on the Effect of the Oxidation Process on the Reaction Rate (Zircaloy-4 피복관의 염소화 반응 거동: 산화 공정이 반응 속도에 미치는 영향에 대한 기초 연구)

  • Jeon, Min Ku;Lee, Chang Hwa;Heo, Chul Min;Lee, You Lee;Choi, Yong Taek;Kang, Kweon Ho;Park, Geun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • The recovery of Zr from Zircaloy-4 (Zry-4) cladding hulls was demonstrated to investigate the effect of the oxidation process on the reaction rate of the chlorination reaction. In chlorination reaction experiments performed for 6 h, where reaction products were collected every 2 h, it was observed that a significant decrease in the reaction rate was caused by the oxidation process ($500^{\circ}C$, 10 h under an air atmosphere) within the reaction period of 0 - 2 h. The amount of reaction residue increased from 0.95 to 1.65wt% of initial weights in the fresh and Zry-500-10 (Zry-4 hulls oxidized at $500^{\circ}C$ for 10 h under an air atmosphere) hulls, respectively. The purity of the recovered Zr was identical at 99.61wt% for the fresh Zry-4 and Zry-500-10 hulls. Quantitative analysis of the chlorination reaction rate was performed by varying the reaction time from 0.5 to 1.0, 2.0, and 4.0 h. The fitting results showed that the relationship between weight loss and reaction time can be interpreted by a linear line with a slope of 23.35wt%/h for the fresh Zry-4 case, while two linear lines were necessary to fit the results of Zry-500-10. In addition, the slope values were 17.12 and 27.16wt%/h for (0 - 20) and (20 - 100)wt% loss regions, respectively.

The Influence of Collision Energy on the Reaction H+HS→H2+S

  • Liu, Yanlei;Zhai, Hongsheng;Zhu, Zunlue;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3350-3356
    • /
    • 2013
  • Quasi-classical trajectory calculations have been carried out for the reaction H+HS by using the newest triplet 3A" potential energy surface (PES). The effects of the collision energy and reagent initial rotational excitation are studied. The cross sections and thermal rate constants for the title reaction are calculated. The results indicate that the integral cross sections (ICSs) are sensitive to the collision energy and almost independent to the initial rotational states. The ro-vibrational distributions for the product $H_2$ at different collision energies are presented. The investigations on the vector correlations are also performed. It is found that the collision energies play a postive role on the forward scatter of the product molecules. There is a negative influence on both the alignment and orientation of the product angular momentum for low collision energy at low energy region. Whereas the influence of collision energy is not obvious at high energy region.

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

Ab initio Calculations of Protonated Ethylenediamine-(water)3 Complex: Roles of Intramolecular Hydrogen Bonding and Hydrogen Bond Cooperativity

  • Bu, Du Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.693-698
    • /
    • 2001
  • Ab initio density functional calculations on the structural isomers, the hydration energies, and the hydrogen bond many-body interactions for gauche-, trans-protonated ethylenediamine-(water)3 complexes (g-enH+(H2O)3, t-enH+(H2O)3) have been performed. The structures and relative stabilities of three representative isomers (cyclic, tripod, open) between g-enH+(H2O)3 and t-enH+(H2O)3 are predicted to be quite different due to the strong interference between intramolecular hydrogen bonding and water hydrogen bond networks in g-enH+(H2O)3. Many-body analyses revealed that the combined repulsive relaxation energy and repulsive nonadditive interactions for the mono-cyclic tripod isomer, not the hydrogen bond cooperativity, are mainly responsible for the greater stability of the bi-cyclic isomer.

Adsorption Dynamics of H2/CO2, H2/CO, H2/CH4 Mixtures in Li-X Zeolite Bed (Li-X 제올라이트 흡착탑에서 H2/CO2, H2/CO, H2/CH4 혼합기체의 흡착 동특성)

  • Park, Ju-Yong;Yang, Se-Il;Choi, Do-Young;Jang, Seong-Cheol;Lee, Chang-Ha;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.783-791
    • /
    • 2008
  • The dynamic characteristics of adsorption using an adsorption bed packed with Li-X zeolite (UOP) were studied through the breakthrough experiments of $H_2/CH_4$ (90:10 vol%), $H_2/CO$ (90:10 vol%) and $H_2/CO_2$ (80:20 vol%) mixtures. Effects of feed flow rate (6.24~10.24 LPM) and adsorption pressure (6.1 bar~10.1 bar) in the Li-X zeolite bed with 2.7 cm of inside diameter and 80 cm of bed length were observed. The smaller feed rate or the higher operating pressure, resulted in the longer of the breakthrough time and the breakthrough curve have tailing due to temperature variance in the bed. The adsorption dynamics of the Li-X zeolite bed were predicted by using LDF model with feed flow and pressure dependent diffusivity. The prediction and experimental data were analyzed with a nonisothermal, nonadiabatic model, dual-site langmuir (DSL) isotherm

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor (유도결합 플라즈마와 이중관 반응기를 이용하여 제조한 보론-도핑된 결정질 실리콘 나노입자의 합성)

  • Jung, Chun-Young;Koo, Jeong-Boon;Jang, Bo-Yun;Lee, Jin-Seok;Kim, Joon-Soo;Han, Moon-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.662-667
    • /
    • 2014
  • B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.

The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 생산 공정의 분젠 반응 부분에서 부반응 제어)

  • Lee, Kwang-Jin;Hong, Dong-Woo;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2008
  • For continuous operation of the sulfur-iodine(SI) thermochemical cycle, which is expected practical method for massive hydrogen production, suggesting operation conditions at steady state is very important. Especially, in the Bunsen reaction section, the Bunsen reaction as well as side reactions is occurring simultaneously. Therefore, we studied on the relation between the variation of compositions in product solution and side reactions. The experiments for Bunsen reaction were carried out in the temperature range, from 268 to 353 K, and in the $I_2/H_2O$ molar ratio of $0.094{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the result, sulfur formed predominantly with increasing temperature and decreasing $I_2/H_2O$ molar ratios. The molar ratios of $H_2O/H_2SO_4$ and $HI/H_2SO_4$ in global system were decreased as the more side reaction occurred. A side reactions did not appear at $I_2/H_2O$ molar ratios, saturated with $I_2$, irrespective of the temperature change. We concluded that it caused by the increasing stability of an $I_{2x}H^+$ complex and a steric hindrance with increasing $I_2/HI$ molar ratios.