• 제목/요약/키워드: H2/CO flame

검색결과 131건 처리시간 0.02초

Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames (H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과)

  • Jung, Seongwook;Park, Jeong;Kwon, Ohboong;Keel, Sangin;Yun, Jinhan
    • Journal of the Korean Society of Combustion
    • /
    • 제18권4호
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.

Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner (충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성)

  • Park, Ju-Yong;Lee, Kee-Man;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • 제16권1호
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • 제18권4호
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • 제17권1호
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Flame Length and EINOx Scaling of Syngas $H_2$/CO Turbulent Non-premixed Jet Flames ($H_2$/CO 합성가스의 비예혼합 난류 제트화염에서 화염 길이와 EINOx 스케일링)

  • Hwang, Jeongjae;Sohn, Kitae;Bouvet, Nicolas;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • 제17권4호
    • /
    • pp.30-37
    • /
    • 2012
  • The flame lengths and NOx emission characteristics of syngas $H_2$/CO turbulent non-premixed jet flames were investigated. The flame length which is the main parameter governs NOx emission was studied for various syngas compositions. The flame length was compared with previous correlation between Froude number and flame height and it shows that they have good agreements. It was confirmed that the turbulent jet flames herein investigated are in the region of buoyancy-momentum transition. NOx emission was reduced with increased Reynolds number and CO contents in syngas fuel and with decreased fuel nozzle diameter which is attributed by decreased flame residence time. Previous EINOx scaling based on flame residence time of $L_f^3/(d_f^2U_f)$ satisfies only the jet flame in momentum-dominated region, not buoyancy-momentum transition region. The simplified flame residence time ($L_f/U_f$) was adopted in modified EINOx scaling. The modified scaling satisfies the jet flames not only in momentum-dominated region but in buoyancy-momentum transition region. The scaling is also satisfied with $H_2$/CO syngas jet flames.

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • 제18권4호
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

Measurement of Laminar Flame Speed of Syngas(H2/CO)/Air Premixed Flame using the Bunsen Burner Method (분젠 버너법을 이용한 합성가스(H2/CO)/공기 예혼합화염의 층류 연소속도 측정)

  • Jeong, Byeonggyu;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.181-183
    • /
    • 2012
  • Syngas laminar flame speed measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas. Representative syngas mixture compositions ($H_2:CO$) such as 25:75%, 50:50% and 70:25% and equivalence ratios from 0.5 to 1.4 were investigated. The measured laminar flame speeds were in good agreement with the previous numerical data as well as experimental data available in the literatures over a wide range of equivalence ratio tested. It was reconfirmed that the laminar flame speed gradually increased with the increase in $H_2$ content in a fuel mixture. In particular, the significant increasing rate of flame speed was observed with the increase in equivalence ratio.

  • PDF

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 edge flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 Edge Flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame (H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling)

  • Hwang, Jeongjae;Sohn, Kitae;Kim, Taesung;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF