• 제목/요약/키워드: H-shaped steel section

검색결과 37건 처리시간 0.026초

Seismic behavior of steel reinforced concrete special-shaped column-beam joints

  • Liu, Z.Q.;Xue, J.Y.;Zhao, H.T.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.665-680
    • /
    • 2016
  • This paper focuses on the study of seismic behavior of steel reinforced concrete special-shaped column-beam joints. Six specimens, which are designed according to the principle of strong-member and weak-joint core, are tested under low cyclic reversed load. Key parameters include the steel form in column section and the ratio of column limb height to thickness. The failure mode, load-displacement curves, ductility, stiffness degradations, energy dissipation capacity and shear deformation of joint core of the test subassemblies are analyzed. The results indicate that SRC special-shaped column-beam joints have good seismic behavior. All specimens failed due to the shear failure of the joint core, and the failure degree between the two sides of joint core is similar for the exterior joint but different for the corner joint. Compared to the joints with channel steel truss, the joints with solid web steel skeleton illustrate better ductility and energy dissipation capacity, but the loading capacity and stiffness are roughly close. With the increasing of the ratio of column limb height to thickness, the joints illustrate higher loading capacity and stiffness, better energy dissipation capacity, but worse ductility.

격자지보의 터널지보재로서의 현장 적용성 평가 (Evaluation on the Applicability of a Lattice Girder for a Support System in Tunnelling)

    • 터널과지하공간
    • /
    • 제9권3호
    • /
    • pp.204-213
    • /
    • 1999
  • 터널 굴착 방법 중 NATM에서는 숏크리트, 록볼트, 강지보재 등이 주요 지보재로 사용되고 있다. 강지보재 중에서 격자지보(Lattice Girder)라 불리는새로운 지보재가유럽에서 개발되어 기존의 H형강 지보재를 대체하여 사용되고 있다. 격자지보는 강봉을 삼각형태로 용접하여 만든 것으로 가벼워 시공이 빠르고, 또한 숏크리트와의 결합특성이 좋아 앞으로 NATM 터널에 널리 사용될 전망이다. 본 연구에서는 국내 터널에 있어서 격자지보의 현장 적용성을 평가하기 위하여 대단면 고속철도 터널에서 현장시험시공을 실시하였으며, 기존의 H형강 지보재와 비교분석 하였다. 현장시험 결과 격자지보는 터널굴착 후의 지반하중을 충분히 지지할 수 있으며 지반변위를 효과적으로 억제할 수 있음을 알 수 있었다.

  • PDF

H형강을 사용한 합성트러스의 합성효과 (The Composite Action of Composite Truss Using H-Shaped Section Steel)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제21권6호
    • /
    • pp.637-646
    • /
    • 2009
  • 바닥슬래브가 있는 경우 국내에서 설계되는 트러스보는 바닥 슬래브와의 합성효과를 고려하지 않고 있다. 이 연구에서는 상하현재를 H형강으로 구성한 합성트러스를 사용하여 기본적인 실험을 수행하였다. 실험에서는 합성트러스의 역학적 거동을 조사하기 위하여 전단연결재의 유무에 따른 영향을 검토하였다. 실험체로서는 철골트러스, 비합성 및 합성트러스 등으로 이루어지며 가력방법으로는 중앙집중재하와 균등휨의 두가지 방법을 사용하였다. 시어 커넥터를 사용한 합성트러스의 합성효과가 실험적으로 확인되어졌다.

800MPa 강재 및 100MPa 콘크리트를 적용한 ㄱ형 강재 매입형 합성기둥의 편심압축실험 (Eccentric Axial Loading Test for Concrete-Encased L-section Columns using 800MPa Steel and 100MPa Concrete)

  • 김창수;박홍근;이호준;최인락
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.209-222
    • /
    • 2013
  • 800MPa급 강재와 100MPa급 콘크리트를 적용한 매입형 합성기둥에 대하여 편심압축실험을 수행하였다. 강재단면의 모멘트팔길이와 변형(응력)을 증가시켜 고강도강재의 성능활용을 극대화할 수 있도록, ㄱ형 강재단면을 네 모서리에 집중 배치한 후, 래티스철근, 링크철근, 띠판을 이용하여 일체화하였다. 이 경우 강재단면의 강력한 횡구속효과로 인해 심부콘크리트의 성능도 개선된다. 실험결과 ㄱ형 강재 매입형 기둥은 H형 강재 매입형 기둥에 비하여 최대강도와 유효휨강성이 1.4배 이상 증가하였다.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

매립형 역T형 합성보의 휨내력에 관한 실험적 연구 (An Experimental Study on Flexural Strength of Inverted T-shaped Composite Beams encased with concrete)

  • 장희성;정재훈;김진무;주경재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.145-152
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section is usually located near the top flange of the steel H-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. However, It is not easy for inverted T-shaped composite beam to construct and to apply continuous beam which has negative bending moment. As a result, it would get more workability and decrease capability of lateral buckling and local buckling, if the bottom flange of inverted T-shaped steel used as a form. Therefore. the objectives of this study are to investigate strength and behaviors of inverted T-shaped composite beam which web is encased by concrete and to grasp bending capacity and efficiency of composite by comparing and analyzing in test piece.

  • PDF

콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험 (Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections)

  • 박홍근;이철호;박창희;황현종;이창남;김형섭;김성배
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.337-347
    • /
    • 2011
  • 본 논문에서는 콘크리트 채움 U형 강재보와 강재 H단면 기둥으로 구성된 접합부의 내진 성능을 평가하였다. 접합부 내진성능을 평가하기 위하여 세 개의 보-기둥 접합부 실험체를 반복주기하중에 대하여 실험하였다. 합성보는 콘크리트 슬래브와 스터드를 이용하여 일체화 되었으며, 슬래브에는 부모멘트를 위한 철근이 배치되었다. 접합부 상세를 실험 변수로 하였으며, 보 접합부의 강화방안 및 약화방안, 합성효과의 정도를 고려하였다. 합성보의 춤은 슬래브 두께를 포함하여 600mm이며, 강재보와 슬래브의 철근은 H형강 기둥과 용접을 통해 접합하였다. 접합부 강화방안은 합성보 플랜지에 덧댐플레이트를 용접하였으며, 약화방안으로서 소성힌지 발생지점에 채움콘크리트 안에 스티로폼을 삽입하였다. 실험 결과 완전합성 실험체는 강도와 변형능력, 에너지 소산에 있어서 우수한 성능을 보여주었다. 변형능력은 특수모멘트골조 기준인 4% 이상의 회전각을 발휘하였다.