• Title/Summary/Keyword: H-domain

Search Result 1,348, Processing Time 0.03 seconds

Investigations on the Magneto-optical Properties of Bilayered Co/Ni Micro-patterned Anti-dot Arrays

  • Deshpande, N.G.;Zheng, H.Y.;Hwang, J.S.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.251-251
    • /
    • 2012
  • A lot of studies are undergoing on the magneto-optical (MO) properties of patterned magnetic systems for the reason that they have potential application to information technology such as ultrahigh-speed computing. Moreover, they can be considered as the future candidates for high-density MO storage devices. Not only the technical aspects, but there have been also tremendous interests in studying their properties related to the fundamental physics. The MO Kerr-rotation effects (both in reflected and the diffracted modes) and the magnetic force microscopy (MFM) are very useful techniques to investigate the micromagnetic properties of such periodic structures. Hence, in this study, we report on the MO properties of bilayered Cobalt (Co)/ nickel (Ni) micro-patterned anti-dot arrays. Such a ferromagnetic structure was made by sequentially depositing co (40 nm)/Ni (5 nm) bilayer on a Si substrate. The anti-dot patterning with hole diameter of $1{\mu}m$ was done only on the upper Co layer using photolithography technique, while the Ni underlayer was kept uniform. The longitudinal Kerr rotation (LKR) of the zeroth- and the first-order diffracted beams were measured at an incidence of $30^{\circ}$ by using a photoelastic modulator method. The external magnetic field was applied perpendicularly to the reflected and the diffracted beams using an electromagnet capable of a maximum field of ${\pm}5$ kOe. Significantly, it was observed that the LKR of the first-order diffracted beam is nearly 4 times larger than that of the zeroth-order beam. The simulated results for the hysteresis loops matched qualitatively well with the experimentally obtained ones. In conjunction with the LKR, we also investigated the magnetic-domain structure by using a MFM system, which were analyzed to elucidate the origin of the enhanced MO rotation.

  • PDF

Temperature dependence of exchange bias in Co/Ni anti-dot arrays

  • Seo, M.S.;Deshpande, N.G.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.436-436
    • /
    • 2011
  • Recently, spintronic devices with submicron structures are widely investigated to take advantage of their unique micromagnetic properties. In this work, we study the temperature dependence of exchange bias in bilayer anti-dot arrays made by depositing Co (40 nm)/Ni (5 nm) ferromagnetic bilayer on Si substrate to form anti-dot arrays with a diameter $1{\mu}m$. The anti-dot patterning was done only for the upper Co layer, while the Ni underlayer was kept unperforated. The temperature dependences of magnetoresistance (MR) and exchange bias were studied along magnetic easy and hard axes. The in-plane MR measurements were performed using a physical-property measurement system (PPMS ; Quantum Design Inc.) at various temperatures. The standard in-line four-point probe configuration was used for the electrical contacts. As temperature was varied, the MR data were obtained in which in-plane field (H=3 kOe) was applied in the directions along the hard and the easy axes with respect to the lattice plane. The temperature dependences of magnetic anisotropy and exchange bias were also studied along the magnetic easy and hard axes. As temperature decreases, the single peak splits into two peaks. While no exchange bias was observed along the magnetic easy axis, the exchange bias field steadily increased with decreasing temperature along the magnetic hard axis. These results were interpreted in connection with the magnetic anisotropy and the effect of the anti-dots in pinning domain wall motion along the respective direction.

  • PDF

Parallel lProcessing of Pre-conditioned Navier-Stokes Code on the Myrinet and Fast-Ethernet PC Cluster (Myrinet과 Fast-Ethernet PC Cluster에서 예조건화 Navier-Stokes코드의 병렬처리)

  • Lee, G.S.;Kim, M.H.;Choi, J.Y.;Kim, K.S.;Kim, S.L.;Jeung, I.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2002
  • A preconditioned Navier-Stokes code was parallelized by the domain decomposition technique, and the accuracy of the parallelized code was verified through a comparison with the result of a sequential code and experimental data. Parallel performance of the code was examined on a Myrinet based PC-cluster and a Fast-Ethernet system. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network communication topology. In this test, Myrinet system shows a superior parallel performance to the Fast-Ethernet system as was expected. A test for the dependency on problem size also shows that network communication speed in a crucial factor for parallel performance, and the Myrinet based PC-cluster is a plausible candidate for high performance parallel computing system.

A Novel Simple Method to Purify Recombinant Soluble Human Complement Receptor Type 1 (sCR 1) from CHO Cell Culture

  • Wang, Pi-Chao;Hisamune Kato;Takehiro Inoue;Masatoshi Matsumura;Noriyuki Ishii;Yoshinobu Murakami;Tsukasa Seya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • The human complement receptor type 1 (CR 1, C3 b/C4b receptor) is a polymorphic membrane glycoprotein expressed on human erythrocytes, peripheral leukocytes, plasma and renal glomerular podocytes, which consists of transmembrane and cytoplasmic domains with 30 repeating homologous protein domains known as short consensus repeats (SCR). CR1 has been used as an inhibitor for inflammatory and immune system for the past several years. Recently; it is reported that CRl was found to suppress the hyper-acute rejection in xeno-transplantation and can be used to cure autoimmune diseases. A soluble form of CRl, called sCRl, is a recombinant CRl by cleaving the transmembrane domain at C-terminus and has been expressed in Chinese Hamster Ovary (CHO) cells. Several purification methods for sCR1 from CHO cells have been reported, but most of them require complicated steps at high cost. Moreover, such methods are mostly performed under the pH condition apt to denaturing sCR1 and causes sCRl losing its activity. We here report a rapid and efficient method to purify sCR1 from CHO cell. The new method consists of a two-stage of cell culture by cultivating cells in serum medium followed by serum-free medium, and a two-stage of column purification by means of heparin and gel filtration column chromatography. By using this novel method, sCR1 can be purified in a simple and effective way with high yield and purity, furthermore, the purified sCR1 was confirmed to retain its activity to suppress the complement activation in vivo and ex vivo.

Thermal Stability of a Nanostructured Exchange-coupled Trilayer (나노구조 교환결합 삼층박막의 열적 안정성 예측)

  • Lee, Jong-Min;Lim, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A recent progress on the prediction of the thermal stability of a nanostructured exchange-coupled trilayer is reviewed. An analytical/numerical combined method is used to calculate its magnetic energy barrier and hence the thermal stability parameter. An important feature of the method is the use of an analytical equation for the total energy that contains the magnetostatic fields. Under an assumption of the single domain state, the effective values of all the magnetostatic fields can be obtained by averaging their nonuniform values over the entire magnetic volume. In an equilibrium state, however, it is not easy to calculate the magnetostatic fields at the saddle point due to the absence of suitable methods of the accessing its magnetic configuration. This difficulty is overcome with the use of equations that link the magnetostatic fields at the saddle point and critical fields. Since the critical fields can readily be obtained by micromagnetic simulation, the present method should provide accurate results for the thermal stability of a nanostructured exchange-coupled trilayer.

Rpi-blb2 Gene-Mediated Late Blight Resistance in Plants

  • Oh, Sang-Keun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.26-26
    • /
    • 2015
  • Phytophthora infestans is the causal agent of potato and tomato late blight, one of the most devastating plant diseases. P. infestans secretes effector proteins that are both modulators and targets of host plant immunity. Among these are the so-called RXLR effectors that function inside plant cells and are characterized by a conserved motif following the N-terminal signal peptide. In contrast, the effector activity is encoded by the C terminal region that follows the RXLR domain. Recently, I performed in planta functional profiling of different RXLR effector alleles. These genes were amplified from a variety of P. infestans isolates and cloned into a Potato virus X (PVX) vector for transient in planta expression. I assayed for R-gene specific induction of hypersensitive cell death. The findings included the discovery of new effector with avirulence activity towards the Solanum bulbocastanum Rpi-blb2 resistance gene. The Rpi-blb2 encodes a protein with a putative CC-NBS-LRR (a coiled-coil-nucleotide binding site and leucine-rich repeat) motif that confers Phytophthora late blight disease resistance. We examined the components required for Rpi-blb2-mediated resistance to P. infestans in Nicotiana benthamiana. Virus-induced gene silencing was used to repress candidate genes in N. benthamiana and to assay against P. infestans infections. NbSGT1 was required for disease resistance to P. infestans and hypersensitive responses (HRs) triggered by co-expression of AVRblb2 and Rpi-blb2 in N. benthamiana. RAR1 and HSP90 did not affect disease resistance or HRs in Rpi-blb2-transgenic plants. To elucidate the role of salicylic acid (SA) in Rpi-blb2-mediated resistance, we analyzed the response of NahG-transgenic plants following P. infestans infection. The increased susceptibility of Rpi-blb2-transgenic plants in the NahG background correlated with reduced SA and SA glucoside levels. Furthermore, Rpi-blb2-mediated HR cell death was associated with $H_2O_2$, but not SA, accumulation. SA affects basal defense and Rpi-blb2-mediated resistance against P. infestans. These findings provide evidence about the roles of SGT1 and SA signaling in Rpi-blb2-mediated resistance against P. infestans.

  • PDF

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

High-Level Constitutive Expression of Mouse CD4 and CD4/CD8${\alpha}$ Hybrid Molecules in Transgenic Mice

  • Kim, Joongkyu;Choi, Young-Il;Park, Sang-D;Seong, Rho-H
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.657-663
    • /
    • 1997
  • The CD4 and CDS coreceptors, in conjunction with the T cell receptor (TCR) , make important contributions to the differentiation of thymocytes. They have been shown to be involved in the clonal deletion and positive selection processes during T cell development in thymus. To further analyze the role of CD4 and CDS proteins during T cell differentiation, we have generated transgenic mice constitutively expressing high levels of a native CD4 and a CD4{CDSa hybrid protein. The hybrid protein is composed of CD4 extracellular domain linked to the CD8a transmembrane region and cytoplasmic tail. The transgenes were driven by human beta-actin promoter, and therefore, they were expressed in all tissues examined including thymus, spleen, and lymph nodes. The resulting CD4 and CD4{CD8${\alpha}$transgenic mice were found to express the CD4 and CD4{CD8${\alpha}$ respectively, in developing thymocytes and peripheral T cells. The expression levels of transgenic proteins were 5-10 times higher than that of endogenous CD4 in thymus. However, total surface CD4 expression (CD4 or CD4{CD8${\alpha}$ transgenic protein plus endogenous CD4) of the transgenic mice were main. tained at similar levels compared to control littermates. Surface CD4 expression on CDS T cells, however, was significantly lower than that on cells expressing endogenous CD4. These results suggest that a total avidity between developing thymocytes and thymic stromal cells is impor. tant for differentiation of thymocytes.

  • PDF

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.