• Title/Summary/Keyword: H-bridge cell

Search Result 68, Processing Time 0.022 seconds

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

The Simplified PWM Method using Serial Communication in Cascaded H-Bridge Multilevel Inverter (직렬통신을 이용한 H-브릿지 멀티레벨 인버터의 PWM 구현방법)

  • Park Young-Min;Ryu Han-Seong;Lee Hyun-Won;Lee Se-Hyun;Lee Chung-Dong;Yoo Jl-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.620-627
    • /
    • 2004
  • As h-bridge multilevel inverter is connected with series of single phase power cell, so it obtain high voltage using low voltage power semi-conductor and output voltage similar to sine wave. In this topology, the number of power cell increases in proportion to the output voltage level. Therefore, there are drawbacks that are responsibility against operating ability of main controller and signal wire increase. However, we can overcome this problems by the substitution of serial communication for the PWM signal in power cell control. Additionally, it has merits of reliability and maintenance. This paper deals with the synchronization and phase-shift method of power cell PWM using CAN(Controller Area Network) communication interrupt in H-bridge multilevel inverter. The advantages of proposed method are signal-line simplification using serial communication between main controller and cell controller, burden reduction in main controller, modularization of power cell, easy protection of each power cell, expandability improvement and reliability increase of control signal and power cell. This paper establishes propriety and reliability of proposed method through experiment of 13-level H-bridge multilevel inverter.

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

Algorithm on the power Cell AVR(Auto Voltage Regulation) of H-Bridge Multi-level Inverter (H-bridge 멀티-레벨 인버터의 파워Cell AVR에 관한 알고리즘)

  • Jeon, J.H.;Yun, H.M.;Kim, M.K.;Lee, J.P.;Jang, D.J.;Na, S.H.;Kwon, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.317-320
    • /
    • 2005
  • 본 논문은 멀티-레벨 H-bridge 인버터에서 입력전압 변동에 따른 AVR(Auto Voltage Regulation)기능을 적용 그 타당성을 제안하였다. 기존의 범용 인버터에서 (V/F)로 구동되는 전동기 시스템에 있어서 인버터에 공급되는 입력 전압은 출력 주파수에 따라 출력 전압 비율을 일정하게 하고 기동에 필요한 전압을 더하여 출력하는 방식이다. 집중 제어 방식의 멀티-레벨 H-bridge 인버터에서는 Cell의 DC-Link 전압을 Master에서 받아들여서 각각의 Cell에 기준 전압값을 지령하게 된다. 그러므로 입력 전압 변동에 따른 DC-Link 전압의 변동이 발생하게 되면 상전압 Unbalance 가 발생하게 되어 부하가 원하는 출력 전압을 낼 수가 없게 된다. 또한 각각의 Cell을 제어하는 Master 제어기가 가지고 있는 문제점을 보완하여 각각의 Cell 제어기 스스로가 AVR을 수행하는 좀더 나은 방법을 제안하였다.

  • PDF

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

Development of 3,300V 1MVA Multilevel Inverter using Series H-Bridge Cell (3,300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • 박영민;김연달;이현원;이세현;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.478-487
    • /
    • 2003
  • In this paper, a type and special feature of Multi-level inverter used in medium-voltage and high-capacity motor driver is introduced. Especially, a power quality and structural advantages of H-Bridge Multi-level inverter is described. It presented the specific structure of power circuit, design method, controller composition and PWM techniques of the cascaded H-Bridge Multi-level inverter which is developed. The feasibility of the developed product based on 3,300V lMVA 7-level H-bridge inverter was studied by experiments and we get conclusion that 1)generate of near-sinusoidal output voltage; 2)is low dv/dt at output voltage; 3)reduce the harmonic injection at input; Experiment demonstrate that it is very economical in productivity because of using the existing production technique and examination equipment, and has the reliability and a good maintenance due to the structure of Power Cell unit combination as well as low cost IGBT.

H-Bridge Multi-Level Inverter System (H-Bridge 멀티-레벨 인버터 시스템)

  • Yun, H.M.;Jeon, J.H.;Lee, J.P.;Jang, D.J.;Na, S.H.;Kwon, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.313-316
    • /
    • 2005
  • 본 논문은 대용량 진력변환장치인 멀티-레벨 인버터 시스템에서 출력 전압가변이 손쉬운 HBML(H-Bridge Multi-Level) 인버터의 Master와 Cell 제어기 구성에 관한 것이다. HBML 인버터는 각각의 단위 Cell을 저압에서 사용하는 인버터로 구성하면, 구조적으로 풀-브릿지(Full-Bridge) 인버터를 캐스케이드 방식으로 연결하여 고압출력을 얻을 수 있는 토폴로지이다. 시스템에서 Master와 Cell의 제어 처리를 한곳에 집중하지 않는 분산 제어 방식을 적용하여 통신 Data를 최적화하도록 구성하고, 이를 바탕으로 두 제어기를 고성능 원-칩(One-Chip) DSP로만 설계하였다. 모든 외부 모듈을 내장한 CPU로 제어기가 구성될 경우, 외부 노이즈에 강하며, 추가되는 하드웨어 결선을 최소화할 수 있다. 본 논문에서는 HBML 인버터 출력 생성 시 반드시 요구되는 출력 PWM 동기 및 위상전이(Phase Shift)를 각 제어기 자체에 내장된 모듈만을 이용해서 구현하였다.

  • PDF

Design and Research on High-Reliability HPEBB Used in Cascaded DSTATCOM

  • Yang, Kun;Wang, Yue;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.830-840
    • /
    • 2015
  • The H-bridge inverter is the fundamental power cell of the cascaded distribution static synchronous compensator (DSTATCOM). Thus, cell reliability is important to the compensation performance and stability of the overall system. The concept of the power electronics building block (PEBB) is an ideal solution for the power cell design. In this paper, an H-bridge inverter-based “plug and play” HPEBB is introduced into the main circuit and the controller to improve the compensation performance and reliability of the device. The section that discusses the main circuit primarily emphasizes the design of electrical parameters, physical structure, and thermal dissipation. The section that presents the controller part focuses on the principle of complex programmable logic device -based universal controller This section also analyzes typical reliability and anti-interference issues. The function and reliability of HPEBB are verified by experiments that are conducted on an HPEBB test-bed and on a 10 kV/± 10 Mvar DSTATCOM industrial prototype.

A novel hybrid multilevel inverter using DC-Link voltage combination (DC 링크 전압조합을 이용한 새로운 Hybrid형 멀티레벨 인버터)

  • 주성용;강필순;박성준;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2004
  • This paper presents a novel hybrid multilevel inverter using DC-Link voltage combination in order to improve the waveshape of output voltage and reduce harmonics. The proposed multilevel inverter can generate an 11-level output voltage. It employs three H-bridge cell, which consists of single phase full-bridge inverter module. Among them, two modules are used for level generation, and one module performs PWM switching. Nine levels are synthesised by the level inverter, and two levels are added to output by the PWM inverter. As a result, it generates an 11-level. The operational principles are explained in depth, and the validity of the proposed system is verified through the PSpice simulation and experimental results based on a prototype.

Output Voltage Control in a Serise Multilevel H-bridge Inverter with SHE-PWM Method (직렬 멀티레벨 H-bridge inverter에서 SHE-PWM방식을 사용한 출력 전 압의 제어)

  • Kim J.Y.;Jeong S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.1-4
    • /
    • 2003
  • This paper proposes a method of voltage control for three-phase multilevel H-bridge inverters with selective harmonic elimination (SHE) PWM The full-bridge configuration of H-bridge inverter cells enables voltage control with a fixed PWM pattern by means of phase shifting between the legs, which greatly simplifies the control while maintaining the harmonic elimination characteristics. The series combination of the cells in multilevel configuration can be exploited to further improve the hormonic elimination characteristics with proper phase shifting between the ceil volitage. A complexor-based control method is introduced to control the magnitude and phase angle of cell voltages that form three-phase multilevel output voltages. Simulation results show that the proposed method along with SHE PWM would provide satisfactory performance in spite of its simplicity.

  • PDF