• 제목/요약/키워드: H-bonds

검색결과 493건 처리시간 0.023초

Molecular approach to hexagonal and cubic diamond nanocrystals

  • Abdulsattar, Mudar Ahmed
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.192-197
    • /
    • 2015
  • In the present work, we propose a molecule (C14H14) that can be used as a building block of hexagonal diamond-type crystals and nanocrystals, including wurtzite structures. This molecule and its combined blocks are similar to diamondoid molecules that are used as building blocks of cubic diamond crystals and nanocrystals. The hexagonal part of this molecule is included in the C12 central part of this molecule. This part can be repeated to increase the ratio of hexagonal to cubic diamond and other structures. The calculated energy gap of these molecules (called hereafter wurtzoids) shows the expected trend of gaps that are less than that of cubic diamondoid structures. The calculated binding energy per atom shows that wurtzoids are tighter structures than diamondoids. Distribution of angles and bonds manifest the main differences between hexagonal and cubic diamond-type structures. Charge transfer, infrared, nuclear magnetic resonance and ultraviolet-visible spectra are investigated to identify the main spectroscopic differences between hexagonal and cubic structures at the molecular and nanoscale. Natural bond orbital population analysis shows that the bonding of the present wurtzoids and diamondoids differs from ideal sp3 bonding. The bonding for carbon valence orbitals is in the range (2s0.982p3.213p0.02)-(2s0.942p3.313p0.02) for wurtzoid and (2s0.932p3.293p0.01)-(2s0.992p3.443p0.01) for diamantane.

The effects of dentin bonding agent formulas on their polymerization quality, and together with tooth tissues on their microleakage and shear bond strength: an explorative 3-step experiment

  • Erfan, Mohmmad;Jafarzadeh-Kashi, Tahereh Sadat;Ghadiri, Malihe;Rakhshan, Vahid
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권5호
    • /
    • pp.333-345
    • /
    • 2014
  • PURPOSE. Bonding agents (BA) are the crucial weak link of composite restorations. Since the commercial materials' compositions are not disclosed, studies to formulize the optimum ratios of different components are of value. The aim of this study was to find a proper formula of BAs. MATERIALS AND METHODS. This explorative experimental in vitro study was composed of 4 different sets of extensive experiments. A commercial BA and 7 experimental formulas were compared in terms of degree of conversion (5 experimental formulas), shear bond strength, mode of failure, and microleakage (3 experimental formulas). Statistical analyses were performed (${\alpha}$=.05). The DC of selected formula was tested one year later. RESULTS. The two-way ANOVA indicated a significant difference between the shear bond strength (SBS) of two tissues (dentin vs. enamel, P=.0001) in a way that dentinal bonds were weaker. However, there was no difference between the four materials (P=.283). The adhesive mode of failure was predominant in all groups. No differences between the microleakage of the four materials at occlusal (P=.788) or gingival (P=.508) sites were detected (Kruskal-Wallis). The Mann-Whitney U test showed a significant difference between the microleakage of all materials (3 experimental formulas and a commercial material) together at the occlusal site versus the gingival site (P=.041). CONCLUSION. A formula with 62% bisphenol A-glycidyl methacrylate (Bis-GMA), 37% hydroxy ethyl methacrylate (HEMA), 0.3% camphorquinone (CQ), and 0.7% dimethyl-para-toluidine (DMPT) seems a proper formula for mass production. The microleakage and SBS might be respectively higher and lower on dentin compared to enamel.

식품 접촉 모사 환경에서 식품유사용매의 LDPE-나노 TiO2 복합필름 재질특성 영향 평가 (Effect of Food Simulants on the Properties of LDPE-Nano TiO2 Composite Film in Food Contact Environment)

  • 이우석;최재천;박세종;김미경;고성혁
    • 한국포장학회지
    • /
    • 제23권3호
    • /
    • pp.125-132
    • /
    • 2017
  • The effect of food simulants on properties and light barrier function of LDPE-nano $TiO_2$ composite film has been investigated. LDPE-nano $TiO_2$ composite films were prepared with 5.0wt% $TiO_2$ content by melt-extrusion. To simulate food contact environment, according to KFDA standards and specifications for food utensils, containers and packages, food simulants were selected with deionized water, 50% ethanol, 4% acetic acid and n-heptane and composite films were immersed in each food simulant at $70^{\circ}C$, 30 min except n-heptane ($25^{\circ}C$, 60 min). A variety of material properties, including crystallinity, chemical bonds, surface morphology, mechanical, oxygen barrier and optical properties, of LDPE-nano $TiO_2$ composite film were examined with and without the food simulants treatment. As a result, under regulated migration condition, LDPE-nano $TiO_2$ composite showed extremely stable in all properties tested in the study in contact with food simulants indicating that $TiO_2$ nanoparticles are physicochemically stable and quite compatible with LDPE. Results enable us to anticipate migration of $TiO_2$ will probably not occur. To evaluate influence of migration of $TiO_2$ on food stuffs, their color, pH and acidity were observed as well.

Crystal Structure and Spectroscopic Properties of Cyclic Dipeptide: A Racemic Mixture of cyclo(ᴅ-Prolyl-ʟ-Tyrosyl) and cyclo(ʟ-Prolyl-ᴅ-Tyrosyl)

  • Hong, Yong Pyo;Lee, Sung-Hong;Choi, Jong-Ha;Kashima, Ayana;Nakamura, Go;Suzuki, Takayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2299-2303
    • /
    • 2014
  • Two diastereoisomers of cyclo(Pro-Tyr) have been synthesized simultaneously. The crystal structures and conformations of both cyclo($\small{L}$-Pro-$\small{L}$-Tyr) and a racemic mixture of cyclo($\small{D}$-Pro-$\small{L}$-Tyr) and cyclo($\small{L}$-Pro-$\small{D}$-Tyr), abbreviated as rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr), have been determined by a single-crystal X-ray diffraction study at low temperature. The crystals of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) belong to orthorhombic space group $Pna2_1$ with a = 10.755 (1), b = 12.699 (1), c = 9.600 (1) ${\AA}$ and Z = 4. The tyrosine side chain is folded towards the diketopiperazine (DKP) ring. The DKP ring adopts a twist boat conformation with pseudo symmetry $C_{2v}$. The pyrrolidine ring has an envelope conformation with the N5, C4, C7 and C8 atoms in a plane. The crystal of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) is stabilized by hydrogen bonds between amide N2-H2 and carbonyl oxygen O2 in the neighbor. The hydroxyl group of tyrosine residue is also hydrogen bonded to the oxygen of the carbonyl group of the DKP ring in the next molecule. The spectroscopic properties of both isomers are also described.

기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화 (Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes)

  • 최일환;정유진
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.

Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 점결함 특성 (Optical properties and Growth of CuAlSe$_2$ Single Crystal Thin Film by Hot Wal1 Epitaxy)

  • 홍광준;유상하
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.76-77
    • /
    • 2005
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410$^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXO). The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorpt ion spectra was wel1 described by the Varshni's relation, $E_g$(T) = 2.8382 eV - ($8.86\times10^{-4}$ eV/H)$T_2$/(T + 155K). After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{cd}$, $V_{se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also. we confirmed that hi in $CuAlSe_2$/GaAs did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

폐오일을 이용한 아마이드계 아스팔트 박리방지제의 합성 및 특성 분석 (The Synthesis and characterization of of asphalt anti-stripping agents, amides synthesized from waste oils)

  • 이상아;김지웅;조남준
    • 분석과학
    • /
    • 제29권6호
    • /
    • pp.300-304
    • /
    • 2016
  • 폐지방산과 ethylenediamine 또는 N,N'-bis (2-hydroxyethyl)ethylenediamine으로부터 아스팔트 박리방지제를 합성하였다. FT-IR과 NMR을 이용하여 분석한 결과 아마이드결합의 생성 및 박리방지제의 합성이 성공적으로 수행되었음이 확인하였다. 합성된 여러 종류의 박리방지제의 접착특성은 접촉각과 BBS 시험을 통해 비교하였다. 접촉각 측정으로부터 에틸렌다이아민과 동물유지로부터 제조된 시료가 가장 소수성이 컸으며, BBS 시험으로부터 수분저항성도 94%로 가장 우수한 것으로 나타났다. 그러나 에틸렌다이아민과 폐식용유의 반응생성물이 수분처리 전과 후의 절대적인 접착력은 각각 약 3610 및 3227 kPa로 가장 우수하였다. 전반적으로 접착력은 ED의 반응생성물이 HEED의 반응생성물보다 우수하였으며, 폐식용유나 동물유지의 반응생성물들이 순수한 콩기름의 반응생성물들보다 우수하였다.

과산화수소/초음파를 이용한 알지네이트의 저분자화 (Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation)

  • 최수경;최유성
    • 폴리머
    • /
    • 제35권5호
    • /
    • pp.444-450
    • /
    • 2011
  • 천연 알지네이트를 저분자화시키기 위해 과산화수소/초음파를 사용하였다. 이때 반응 온도 시간, 과산화수소 농도 그리고 초음파 조사 조건 등이 저분자화 생성물에 미치는 영향을 검토하였다. 생성된 저분자 알지네이트의 화학적 구조를 규명한 결과 주로 1,4-glycosidic bond가 끓어져서 저분자화가 진행되고 특정조건에서 생성물에 formate 그룹이 형성됨을 확인할 수 있었다. 생성물의 분자량은 MALS가 부착된 GPC를 사용하여 측정하였다. 2 wt%의 고분자 알지네이트 용액을 50 $^{\circ}C$의 초음파 분위기에서 0.5시간 동안 반응시켰을 때 분자량이 450 kDa에서 15.9 kDa로 저하되었다. 또한 분자량분포도는 상당히 좁고 반응 조건에 따라 큰 변화 없이 일정함(~2)을 확인할 수 있었다.

Novel Erbium(III)-Encapsulated Complexes Based on ${\pi}$-Extended Anthracene Ligands Bearing G3-Aryl-Ether Dendron: Synthesis and Photophysical Studies

  • Baek, Nam-Seob;Kim, Yong-Hee;Roh, Soo-Gyun;Lee, Dong-Hyun;Seo, Kang-Deuk;Kim, Hwan-Kyu
    • Macromolecular Research
    • /
    • 제17권9호
    • /
    • pp.672-681
    • /
    • 2009
  • A series of inert and photo-stable Er(III)-encapsulated complexes based on ${\pi}$-extended dendritic anthracene ligands bearing G3-aryl-ether dendron ([G3-AnX]-$CO_2H$), which retain different ${\pi}$-bridging systems, such as single (X= S), double (X= D) and triple (X= T) bonds was designed and synthesized to establish the structure-property relationship. The near infrared emission intensities of Er(III)-encapsulated complexes were enhanced dramatically by increasing the ${\pi}$-conjugated extension of anthracene ligands. The time-resolved luminescence spectra show monoexponential decays with a lifetime of $2.0{\sim}2.4ms$ for $Er^{3+}$ ions in thin films, and calculated intrinsic quantum yields of $Er^{3+}$ ions are in the range of $0.025{\sim}0.03%$. As a result, all Er(III)-encapsulated dendrimer complexes exhibit the near IR emission with the following order: $Er^{3+}-[G3-AnD]_3$(terpy) > $Er^{3+}-[G3-AnS]_3$(terpy) ${\approx}$ $Er^{3+}-[G3-AnT]_3$(terpy), because $Er^{3+}-[G3-AnD]_3$(terpy) has a higher relatively spectral overlap J value and energy transfer efficiency. In addition, the lack of detectable phosphorescence and no significant spectral dependence of the ${\pi}$-extended anthracene moieties on the solvent polarity support energy transfer from their singlet state to the central $Er^{3+}$ ion taking place in $Er^{3+}-[G3-AnX]_3$(terpy).