• Title/Summary/Keyword: H-bonding

Search Result 897, Processing Time 0.027 seconds

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.

Fabricationof small size catridge for electrolyte measurement including flow-channel and microsensors (Flow-channel과 microsensor를 내장한 전해질 측정용 소형 카트리지 제작)

  • 이영철;조병욱;김창수;고광락;손병기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.78-83
    • /
    • 1998
  • A small size cartrideg for FET type electrolyte sensor is designed and faricated with much simplified process by using micromachining tenchiques such as silicon etching andglass bonding. Size of the whole cartideg is 2.4cm*2.5cm, and the dead volume of a micro flow-channel in the cartrideg is only 8.5.mu.l. The photosensitive polymer(THB 30) is used to define a micropool and to encapsulate the sensor surface for standardizationof electrolyte sensors. To miniaturize micro flow-channel conventional reference electrode(Ag/AgCl) a differential amplification is introduced using REFET and quasi reference electrode. Refet was fabricated using photosensitive polymer(OMR 83). The fabricated cartridge with built-in pH-ISFET showed good operational characteristics such as linearity and high sensitivity (55.4mV/pH) in a wide pH range(pH2-pH12).

  • PDF

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

Adsorption Stnlctures of Benzene and Pyridine on a $Si(5\;5\;12)-2{\times}1$ ($Si(5\;5\;12)-2{\times}1$ 표면에 벤젠과 피리딘의 결함구조)

  • Jang S. H.;Oh S.;Hahn J. R.;Jeong H.;Jeong S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2006
  • We investigated the adsorption of benzene and pyridine on $Si(5\;5\;12)-2\times1$ at 80 K by using variable-low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The benzene molecule most strongly binds to two adatoms on the D3 and D2 units in a tilted butterfly configuration, which consists of $di-\sigma$ bonds between C atoms and Si adatoms and two C=C double bonds in the benzene molecule Pyridine molecules interact with adatom(s) on the D2 and D3 units through both Si-N dative bonding and $di-\sigma$ bonds. The dative bonding through the lone pair electrons of N atom produces a vertical configuration (pyridine-like), which is more stable than $di-\sigma$ bonds $Di-\sigma$ bonds can be formed either through Si-N1 and Si-C4 or Si-C2 and Si-C5.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

Relative Parameter Contributions for Encapsulating Silica-Gold Nanoshells by Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels

  • Park, Min-Yim;Lim, Se-Ra;Lee, Sang-Wha;Park, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.307-312
    • /
    • 2009
  • Core-shell hydrogel nanocomposite was fabricated by encapsulating a silica-gold nanoshell (SGNS) with poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) copolymer. The oleylamine-functionalized SONS was used as a nanotemplate for the shell-layer growth of hydrogel copolymer. APS (ammonium persulfate) was used as a polymerization initiator to produce a hydrogel-encapsulated SGNS (H-SGNS). The amounts of NIPAM (N-isopropylacrylamide) monomers were optimized to reproduce the hydrogel-encapsulated SGNS. The shell-layer thickness was increased with the increase of polymerization time and no further increase in the shell-layer thickness was clearly observed over 16 h. H-SGNS exhibited the systematic changes of particle size corresponding to the variation of pH and temperature, which was originated from hydrogen-bonding interaction between PNIPAM amide groups and water, as well as electrostatic forces attributed by the ionization of carboxylic groups in acrylic acid.

The Installation Technique of Grounding Electrode Conductors for Metal Oxide Distribution Surge Arresters (배전용 피뢰기의 접지도선 설치기법)

  • Lee, B.H.;You, I.S.;Lee, T.R.;Ahn, C.H.;Youn, J.S.;Youn, H.H.;Kim, J.S.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1718-1720
    • /
    • 2001
  • The route of surge arrester connection is very important because bends and kinds of leads increase the impedance to lightning surges and tend to nullify the effectiveness of a grounding electrode conductor. There is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and bonding for 18[kV] metal oxide distribution line arresters was experimentally investigated with lightning and oscillating impulse voltages.

  • PDF

Effect of Additive Gas on the Bonding Structure of a-C:H Films Deposited by rf PECVD (rf PECVD법으로 증착된 a-C:H 박막의 결합구조에 미치는 보조가스의 영향)

  • Song, Jae-Jin;Kim, Seong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1088-1094
    • /
    • 1999
  • 본 연구에서는 rf PECVD(13.56MHz)법을 이용하여 $CH_4$가스에 소량의 보조가스($O_2$$N_2$)를 혼합하여 a-C:H 박막을 얻었다. 이렇게 얻어진 박막의 증착속도는 rf power 증가에 따라서 증가하다가 200W에서는 다시 감소하였으며, 산소와 질소가스의 유량이 증가함에 따라 감소하였다. FT-IR분석으로 계산된 박막내의 수소함량은 rf power 증가와 산소 및 질소첨가량의 증가에 따라 감소하였다. 산소가스 첨가 시에는 C=O 결합이 생성되며, 질소가스 첨가 시에는 C=N 결합이 생성됨을 FT-IR 분석을 통하여 알 수 있었다. 이와 같이 산소와 질소를 보조가스로 첨가할 경우에 스퍼터링 효과로 박막내의 수소함량 감소와 더불어 a-C:H 박막의 구조 변화를 일으킬 수 있을 것으로 생각된다. Raman 분석결과 산소와 질소를 첨가함에 따라서 I(sub)D/I(sub)G비가 증가하였고, D line과 G line의 위치가 높은 파수 쪽으로 이동하였으며, D line의 폭은 넓어지는 반면에 G line의 폭은 감소됨을 보였다. 이것은 산소와 질소의 첨가로 박막내의 수소함량 감소, 결합각의 disorder 감소 및 micro-crystallite 흑연의 형성에 의한 것이라고 판단된다.

  • PDF

Development of spacer formation techni4ue for high-voltage FED application (고 전압 FED용 Spacer형성 기술 개발)

  • Kang, M.S.;Ju, B.K.;Lee, Y.H.;Yu, K.H.;Oh, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3274-3275
    • /
    • 1999
  • This paper presents a new method of spacer assembly using anodic bonding method which is very simple and clean. The spacer having $100{\mu}m(W){\times}2.1{\mu}m(H)$ was bonded on amorphous silicon film of anode plate. Then, the vertical-type electrode was used for assembling of spacer in high voltage field emission display. In these results, we suggested that the vertical-type electrode provided spacer alignment for high aspect ratio and more simple batch process than conventional method.

  • PDF