• Title/Summary/Keyword: H-beam frame

Search Result 96, Processing Time 0.02 seconds

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

Strengthening of Non-ductile Reinforced Concrete (RC) frames with Expansive Joint Mortar and H-beam Frame (팽창형 접합부 모르타르와 H형강 프레임에 의한 비내진 상세를 갖는 철근콘크리트 골조의 내진보강)

  • Kim, Ji-Hyeon;Jang, Seok-Joon;Yun, Da-Ae;Kim, Dae-Young;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.127-135
    • /
    • 2019
  • The seismic performance of non-ductile reinforced concrete (RC) frame retrofitted with H-beam frame and cast expansive mortar into joint between existing RC frame and H-beam frame is investigated experimentally and analytically. RC frames considered in the study contain non-ductile reinforcement details of low-rise school building constructed in Korea before 1988. The tests were conducted on half-scale specimens simulating the lower frame assemblages of a typical school building. Two one-bay, one-story RC frames with and without retrofitting with H-beam frame and expansive joint mortar were tested to failure. Test and analysis results indicated that seismic strengthening using H-beam and expansive joint mortar significantly improved the lateral strength and stiffness of non-ductile RC frame without installing anchor bolts to fit H-beam frame into existing RC frame. The effectiveness of seismic strengthening technology proposed in the study for non-ductile RC frame was verified experimentally and analytically.

The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMIT (LMTT용 Suhttle Car의 Frame 강도 및 강성에 미치는 Cross Beam의 영향)

  • Lim J. H.;Han G. J.;Lee K. S.;Han D. S.;Shim J. J.;Lee S. W.;Jeon Y. H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.323-328
    • /
    • 2004
  • According as the quantity of goods transported by ship is increasing about $7\%$ per year, a port environment is rapidly changing. To meet this situation successfully, the development of the next generation port loading and unloading system (LMTT) is studied. A Frame of shuttle car for LMTT(Linear Motor-based Transfer Technology) consist of three parts which are outer beam inner beam and cross boom. Outer boom supports a container and inner boom is a framework and cross boom reinforces outer and inner boom. In this study, we carried out the finite element analysis for the effect of cross boom on the strength and stiffness qf the frame according to the number if cross beam leading position of container, the distance ratio if inner boom from center.

  • PDF

A Study of Cutting Method of H-Pile for Explosive Demolition of SRC Structure (철골구조물 발파해체를 위한 H형강 절단방법에 대한 연구)

  • Min Hyung-Dong;Lee Yun-Jae;Song Young-Suk;Kim Hyo-Jin
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2005
  • It follows in deterioration of the steel frame structure and becomes remodeling and removal. The construction work characteristic, economical efficiency and stability environment characteristic are planned and considered hereafter control plan of the steel frame structure which is deteriorated currently to cutting mettled plentifully sued on gas cutting of H beam. However it will not be able to apply from the explosives demolition which is makes a weak instantaneously and then collapses the building at the time. In this study, shape charge was used for cutting of the H-beam. That is the element testing to estimate explosives demolition for steel frame structure. As a result, it is found for single-side rutting method, both-sides rutting methods by H-beam thickness and pre-rutting process. It confirmed an affix method and an ease characteristic by fixing tool. Also, it is shown that air blasting decreased about 8dB(A) in order to reduce air blasting used by sand box. However, it will be required to reduce air blasting little more because explosives demolition will be done in urban site.

The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMTT (LMTT용 셔틀 카의 프레임 강도 및 강성에 미치는 크로스 빔의 영향)

  • Lim J. H.;Han G. J.;Lee K. S.;Han D. S.;Shim J. J.;Lee S. W.;Jeon Y. H.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.77-82
    • /
    • 2005
  • According as the quantity of goods transported by ship is increasing, a port environment is rapidly changing To meet this situation successfully, the development of the next generation port loading and unloading system(LMTT) is studied A Frame of shuttle car for LMTT(Linear Motor-based Transfer Technology) consists of three parts which are outer beam, inner beam and cross beam In this study, we carried out the finite element analysis for the effect of cross beam on the strength and stiffness of the frame according to the number of cross beam, loading position of container, the distance ratio of inner beam from center. The result is as follow ; When the load is applied on outer beam and inner beam concurrently and the number of cross beam is 5, that is the optimum condition in frame design.

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

A Study on the Transplantation Methods of Large Trees - The Case of Celtis Sinensis in Chonan and Ginkgo biloba in Andong - (대형 수목의 이식공법 - 천안시 팽나무와 안동시 은행나무 사례 -)

  • 임재홍;이재근;김학범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.92-104
    • /
    • 2002
  • This study investigates, analyzes, and summarizes Dansplantation techniques and methods through practical methodology centering on fieldwork in order to present effective planting methods for large trees that have important significance. The conclusions are as follows : 1. The transplantation process of a large tree generally consists of the stages of digging up a tree, manufacturing a carrier frame, loading the tee on a vehicle, transporting, transplanting the tree, installing a strut and maintaining and managing the new transplant. In addition, planting a tree on a mounted place includes the primary procedures of trimming out the root, and preparing for transplanting the tree on a mounted place, as well as the secondary work of trimming out the root, transplanting a tree on a mounted place, maintenance and management. 2. In order to decide on a transplantation method for a large-sized tree, a structure calculation has to be performed first. That is, one must calculate the weight of the tree and the allowable stress of the strut (H-beam, etc.) fhst and then decide on the upper method through computer modeling based upon this structural calculation. 3. As a result of the analysis of a transplanted tree using the life soil method, it was confirmed that large quantities of feeder roots had developed around the root within a short time after the transplantation. The life soil method has proven to be very effective for transplantation of large-sized trees. 4. As for the production method of an H-beam strut frame, it was found that the manufacturing process and disassembly process were simple and proper; therefore, the H-beam frame is an appropriate structure to be used in the transplantation of large trees. 5. The concavo-convex method, which consists of filling the life soil in the concavo-convex area around the root, was found to be a method that promotes the growth of feeder roots within a short period of time and saves the supply of water at the same time.

Integrity evaluation of the welded structure bogie for the railway freight car (철도화차용 용접구조대차의 건전성평가에 관한 연구)

  • Hong J.S.;Ham Y.S.;Chung H.C.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.361-364
    • /
    • 2005
  • Some bogie frames manufactured in 1999, 2000 year have the fatal problem. Three or four years later, the cracked end beam among them have discovered in 2002, 2003 year. The crack situation of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment. To improve the end beam, a research of covering the whole field of welded type bogie frame was started. Main line real tests were performed at Young-Dong line. The stress of main positions for bogie frame was measured. Also up-down direction and left-right direction vibration acceleration of the bogie frame were measured. At this time the tests were performed for the three types bogie. The test result concludes that the crack cause of the end beam is not brake load but vibration at running mainly. It is estimated that the life of the improved car which end beam reinforced is safe within the car permitted life(25 years). The improvement methods of the end beam are presented by construction modification, parts modification. The integrity evaluation is inspected by analysis the real line test results, the improvement methods of the end beam.

  • PDF

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Evaluation of Seismic Performance in Relation to Beam-Panel Zone Strength Ratio of CFT Column to H-beam Endplate Connections (CFT 기둥-H형강보 엔드플레이트 접합부의 보-패널존 강도비에 따른 내진성능 평가)

  • Kim, Young Ju;Kim, Jae Keon;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.769-777
    • /
    • 2000
  • This paper presents the results of cyclic seismic performance in relation to beam-panel zone strength ratio of CFT Column to H-beam steel moment connections. Each test specimen consisted of $H-350{\times}175{\times}7{\times}11$ beam(SS400) and ${\boxe}-250{\times}250{\times}9$, ${\boxe}-250{\times}250{\times}12$ column(SPSR400). Main parameter is a column panel zone strength relative to beam strength. Energy absorption capacity available in the specimens ranged from 5.2 to 12.7(tm). If panel zone strength relative to beam strength is too strong or weak, the energy absorption capacity tended to be inferior. About steel moment-resisting frame, the test results of this experiment seem to support the investigation that permitting panel zone yielding shall be more advantageous to enhancing total seismic performance.

  • PDF