• Title/Summary/Keyword: H-beam backfill

Search Result 4, Processing Time 0.019 seconds

Structural Stability Study on the Location and Installation form of H-beam Backfill Applied to Top-Down Construction Method (역타공법에 적용되는 뒷채움재 위치 및 설치 형태에 대한 구조 안정성 연구)

  • Shim, Hak-Bo;Jeon, Hyun-Soo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.179-179
    • /
    • 2021
  • Top-Down construction method is a method of connecting a beam to a column and using a strut to support earth retaining walls. This method has the advantage of reducing the process of underground construction by reducing the work of installation. Recently, there are a lot of cases of damage and defect occurring in H-beam backfill applied to Top-Down construction method and the concrete slab supporting H-beam backfill. For this, appropriate methods were suggested through finite element analysis of the position and installation form of the H-beam backfill.

  • PDF

A study on Reinforcement Methods to Improve the Usability of the H-beam Backfill Installation Part in Top-Down Construction Method (역타공법 뒷채움재 설치 구간의 사용성 개선을 위한 보강 방안 연구)

  • Shim, Hak-Bo;Jeon, Hyun-Soo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.180-180
    • /
    • 2021
  • Recently, structural damage and defect has occurred in the H-beam backfill installation part of Top-Down construction method. In order to secure structural safety and usability in the adjacent section of the backfilling method, It turns out that it is necessary to analyze by dividing into various cases. The H-beam backfill installation section is divided into the case of adding a vertical plate inside the slab, adding a shear stud, adding a reinforcing bar, changing the thickness of the pressure plate, and filling the H-beam backfill with mortar. Ansys modeling was performed and an appropriate solution was suggested by analysis.

  • PDF

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF