• Title/Summary/Keyword: H-NBR

Search Result 18, Processing Time 0.022 seconds

Thermal Aging Behavior of H-NBR/NBR Blend (H-NBR/NBR 블렌드의 열노화거동)

  • Choi, Won-Seok;Kim, Gun-Wan;Do, Je-Sung;Yoo, Myung-Ho;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • In the present investigation, thermal aging behavior of H-NBR/NBR blend with various H-NBR content was investigated. Mixture of dicumyl peroxide and sulfur were used as a curing agent. The influence of the thermal aging of the H-NBR/NBR blends on the solid state properties such as tensile strength, elongation at break, hardness and abrasion resistance was investigated. Tensile strength was increased with increasing H-NBR content, while abrasion resistance was decreased. Both elongation at break and hardness were not affected by the addition of H-NBR. The properties such as hardness, tensile strength and elongation at break of the aged samples were lower than unaged samples. However, the rate of deterioration of those properties was decreased by increasing the H-NBR content, which indicated that improved thermal aging behavior was obtained by the addition of H-NBR. Abrasion loss was increased with increasing aging time, but it became less by the addition of H-NBR addition.

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

Prediction of Characteristics Life of the Rubber Gasket (가스켓용 고무소재의 특성수명 예측)

  • Park, Joon-Hyung;Lee, Se-Hee;Jang, Hyun-Duck;Kim, Gwang-Sub;Yang, Jeong-Sam
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.213-235
    • /
    • 2010
  • In this paper, we carried out an accelerated degradation test that is commonly used to predict characteristics life of rubber gaskets for a pole transformer. The potential failure mode applied for the test is rubber elongation and the corresponding failure mechanism is heat. From the result, we found that Weibull distribution is the fatigue life distribution in NBR and H-NBR. After estimating characteristics life in commonly used temperature, the average life span of $B_{50}$ in NBR is 7.7 years under $50^{\circ}C$ and the life span in H-NBR is 28 years.

Rubber gaskets for fuel cells-Life time prediction through acid ageing

  • Kim, Mi-Suk;Kim, Jin-Kuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.47-51
    • /
    • 2007
  • The present paper reports the life time prediction of Acrylonitrile-Butadiene rubber (NBR) fuel cell gasket materials as a function of operational variables like acid concentration, ageing time and temperature. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. The acid ageing of the gasket compounds has been investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing acid ($H_2SO_4$) concentrations of 5, 6, 7 and 10 vol%. Material characteristics the gas compound such as cross-link density, tensile strength and elongation at break were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both 120 and $140^{\circ}C$, but at $160^{\circ}C$ interestingly the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increase in both the acid concentrate ion & temperature. The life time of the compounds were evaluated using the Arrhenius equation.

  • PDF

A Study on the Life Time Prediction and Acid-Heat aging Property of NBR Rubber for Fuel Cell Gasket (연료전지 카스켓용 NBR 고무의 산-열 노화 특성과 수명예측에 관한 연구)

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Seok-Jin;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.20-31
    • /
    • 2007
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the NBR compound was prepared by sulfur-cure system, and was used in predicting the lifetime of rubber gasket made by the compound. The accelerated material aging was investigated at different temperatures at 120, 140 and $160^{\circ}C$ and aging time from 3 hours to 600 hours at 5, 6, 7 vol %. of $H_2SO_4$ concentrations The rubber strips were placed in acid solution using pyrex g1ass tube. Both ends of pyrex g1ass tube were sealed to avoid evaporation of solution during heating at given time. The material test and accelerated acid-heat aging test were carried out to predict the useful life of NBR rubber gasket for a fuel cell stack. In order to investigate the effects of acid-heat aging on the properties of the NBR, tensile strength, elongation at break, hardness and crosslink-density were measured. The tensile strength decreases as the $H_2SO_4$ concentrations and temperature increase. Results were evaluated using Arrhenius equation.

Preparation Technique of Thermostable Foam-Floater for High Temperature Engine Oil (고온 엔진오일용 내열성 발포부표 제조 기술)

  • Kim, Byoung-Sik;Hong, Joo-Hee;Chung, Yongjae;Heo, Kwang-Beom
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.82-86
    • /
    • 2006
  • When a domestically manufactured floater is used in a general gasoline or LPG car, or a flowmeter is floated long time in the engine oil under above $150^{\circ}C$, the floater will be swelled or its organization will be slackened because weight and volume will be changed due to the osmosis of fuel. In this study, we conducted a research on a manufacturing technique of a foam-floater with the small changse in weight and volume, oil-resistance, and thermal resistance in the high temperature engine oil. When the prepared floater TROF II-3, where Nitrile Butadiene Rubber (NBR) as basic material of the floater was superseded by Hydrogenated Nitrile Butadiene Rubber (HNBR), was floated for 100 h at the engine oil of high temperature ($150^{\circ}C$), the change rates of the weight and the volume were 2.90%, and 2.56%, respectively. These were less than the NBR (TROF I-3) case, where the change rates of the weight and the volume were 10.81% and 3.08%, respectively, Therefore, TROF II-3 was determined to be suitable as an engine-oil floater in high temperature because the change of weight and volume were small, the appearance, and the specific gravity of floater were maintained uniformly in the high temperature.

Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack (고분자 전해질 연료전지 스택용 고무 개스킷의 노화특성 연구)

  • Kang, Dong-gug;Hur, Byung-ki;Lee, Dong-won;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2011
  • In order to explore properties of various rubber compounds after thermal aging under the condition similar to the operating environment of a fuel cell-stack, heat resistance and compression set of those compounds were investigated for a long term operation in $H_2SO_4$, $H_2O$, and LLC (ethylene glycol : $H_2O=50:50$) solution. It was assumed that aging Acrylonitrile butadiene rubber (NBR) and Elthylene Propylene diene rubber (EDPM) compound in the solution resulted in discoloration as time passed. It was also found that hydrolysis was developed on the Silicone rubber (VMQ) compound intentionally aged under acidic condition by means of TGA, SEM, and EDS analysis.

Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake (판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가)

  • Park, Hyeyoung;Kim, Sung-gil;Kim, Sang-suk;Choi, I-chan;Kim, Byungwoo;Kim, Seung-jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about $20{\sim}30{\mu}m$, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength $4.8{\sim}6N/mm^2$ or more, rupture elongation 30% or higher, abrasive speed $10mm^2/h$ or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.

A study on dynamic characteristics of sheet type check valves in PZT pump for small liquid delivery (미소유체 이송용 압전펌프를 위한 시트형 체크밸브의 동특성에 관한 연구)

  • Ham Y.B.;Noh J.H.;Shin D.S.;Park J.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1087-1090
    • /
    • 2005
  • In precision machinery systems for medical and chemical applications, micropumps with a low pulsation have been demanded and investigated for accurate delivery of a small amount of liquid. This study proposes sheet type check valves instead of ball type check valves for PZT pumps and performs some tests on dynamics characteristics of check valves having different design parameter with variable frequency. The selected materials of check valves is NBR, PP film, Polyimide and Stainless steel(SUS304). In the experiment, dynamic characteristics of stainless steel thin plate have better performance than others.

  • PDF