• Title/Summary/Keyword: H-Mordenite

Search Result 33, Processing Time 0.023 seconds

Template-free Hydrothermal Synthesis of High Phase Purity Mordenite Zeolite Particles Using Natural Zeolite Seed for Zeolite Membrane Preparation (제올라이트 분리막 제조를 위한 유기주형 없는 고순도 모데나이트 제올라이트 입자 수열합성에 관한 연구)

  • Lee, Du-Hyoung;Alam, Syed Fakhar;Lee, Hye-Rheon;Sharma, Pankaj;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, the natural mordenite (MOR) zeolite seeds were used for the synthesis of high purity mordenite crystals. The effect of seed concentration and crystallization time on the phase purity and surface morphology of MOR crystals has also been reported. The diffraction, elemental and scanning analysis of MOR zeolite particles obtained from 100 g hydrothermal solution batch containing 3 g natural seed, hydrothermally treated at $140^{\circ}C$ for 72 h reveal the high phase-purity of as-synthesized sample having crystals of uniform size ($1-2{\mu}m$). Moreover, high seed concentration leads to the production of mesoporous MOR particles composed of needle shape primary nano crystallites. The gases adsorption performances of as-synthesized MOR particle were carried out at $25^{\circ}C$ and 0-1 bar. Surprisingly, MOR particles show good adsorption potential for $CO_2$ (97.19 mg/g) compared to other gases. Thus it confirms that high purity MOR particles can be synthesized without using any organic template which gives an advantage of separation performance at lower price.

Removal of Heavy Metal Ions in Wastewater Using Zeolite Minerals (제올라이트광물을 이용한 폐수중의 중금속제거)

  • Yim Chai Suk;Yim Going
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • All the applications of natural zeolites make use of one or more of their physical and chemical properties: adsorption, ion-exchange and related molecular sieve properties, dehydration and rehydration, and siliceous composition. Accordingly, the applications of zeolite have been carried out in the various aspects because of its large cation exchange capacity and adsorption properties. In this paper, the adsorption effect of heavy metal ions in wastewater on zeolite mineral by batch adsorption process is studied. The amounts of adsorbed ions were variable by original pH and ionic concentration, especially original pH of solution had an important effect on the adsorption. In case of low pH solution, e.g. below 3.0, clinoptilolite adsorbed $Pb^{2+}$ ,$ Cd ^{2+ }$ , $Cu^{2+}$ and $Zn^{ 2+}$ , but mordenite almost did not adsorb except $Pb^{2+}$ . Under the same conditions, these ions were more adsorbed on clinoptilolite than on mordenite mineral. The velocity of adsorption was relatively fast and it was confirmed by shaking test that the equilibrium of adsorption could be attained in about one hour. The species of exchangeable cation of zeolite had an effect on its removing ability and zeolite of the sodium-exchanged type was the best.

A Study on the Ion-exchange Characteristics of Zeolites(A, 13X, Y, Mordenite, Chabazite) (제올라이트(A, 13X, Y, Mordenite, Chabazite)의 이온교환특성 연구)

  • An, Jin-Soo;Seo, Chung-Seok;Lee, Yong-Rae;Chun, Kwan-Sik;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.949-956
    • /
    • 1994
  • The objective of this study is to experimentally investigate the ion exchange characteristics of five types of Zeolite(Zeolite-A, 13X, Y, Mordenite, Chabazite) for effective removal of Cs, Sr and Co ions in water solution at low concentration(0.01 N and 0.005 N). Total ion exchange capacity and equilibrium isotherm are measured, and free-energy change(${\Delta}G^0$) and enthalpy change(${\Delta}H^0$) in ion exchange reaction are calculated from experimental results. In addition the ion exchange equilibrium in the three-component system for three types of zeolite showing better efficiency is measured and plotted in triangle coordinates. It is shown from experimental results that the magnitude of free-energy change increases with the increasing ion selectivity, and the difference of free energy change between ions correlates closely with that of ion selectivity. The results also shows that Chabazite is effective for the adsorption of Cs ion, and Zeolite-A and Zeolite-13X for that of Sr and Co ions.

  • PDF

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites (제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환)

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.435-441
    • /
    • 2012
  • The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon (활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환)

  • You, Su-Jin;Kim, Saet-Byul;Kim, Yong-Tae;Park, Eun-Duck
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.

Mineralogical Characteristics and Genetic Environment of Zeolitic Bentonite in Yeongil Area (영일 지역 제올라이트질 벤토나이트의 광물특성 및 생성환경)

  • 노진환;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • A zeolitic bentonite, which exhibits whitish appearance and contains considerable amounts (nearly 〉 5%) of zeolites, frequently occurs as thin beds less than 1 m in Yeongil area. The bentonites are mostly found in closely association with zeolite beds in the Nuldaeri Tuff and Coal-bearing formations of the Janggi Croup. A discordant occurrence of the bentonite against the bedding plane is also locally found. Montmorillonite, the major mineral constituent of the bentonite, is mostly associated with clinoptilolite as a zeolite. However, instead of clinoptilolite, mordenite is sometimes included in the case of more silicic bentonite, and heulandite in the less silicic one. It is characteristic that the mordenite is accompanied by lots of opal-CT in the silicic bentonite. SEM observations characteristically indicate that these authigenic phases, especially the montmorillonite and zeolite, nearly coexist as mixtures not forming a fine-scale zoning. The zeolitic bentonite seems to be formed in the comparatively silicic pore fluid at the alkaline condition accompanying pH fluctuation Compared to the zeolite-free normal bentonite, the zeolitic types exhibit somewhat higher REE abundance. These chemical characteristics, together with modes of occurrences and authigenic mineral associations, may suggest that the zeolitic bentonite is not merely diagenetic products and a possible hydrothermal alteration could not be excluded in the bentonite genesis.

Utilization of Natural Zeolite for $NH_4^\;^+-N$ Adsorbent (($NH_4^\;^+-N$ 흡착제(吸着劑)로서의 천연(天然) Zeolite의 이용(利用))

  • Kim, Sang-Su;Hur, Nam-Ho;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • This study was conducted to examine the adsorption capacity of $NH_4\;^+-N$ by natural zeolite for the purpose of investigating the possibility for $NH_4\;^+-N$ eliminator of Korean natural zeolite. The dominant clay minerals of zeolite were clinoptilolite and mordenite. The reaction of $NH_4\;^+-N$ adsorption by zeolite reached equilibrium after 4hrs. The amount of $NH_4\;^+-N$ adsoption by zeolite was not significantly affected by the particle size of zeolite. The order of $NH_4\;^+-N$ adsorption by zeolite according to exchangeable cations was Na-> Ca> K-saturated zeolite. The amount of $NH_4\;^+-N$ adsorption by zeolite was increased with increasing pH of solution and the ratio of zeolite to the volume of solution. The isothermal curvel of $NH_4\;^+-N$ adsorption by zeolite was conformed to Langmuir equation.

  • PDF

Fixed Bed Study for a Detritiation Adsorber

  • Kim K. R.;Lee M. S.;Paek S.;Yim S. P,;Ahn D. H.;Chung H.;Shim M. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.119-125
    • /
    • 2005
  • A method of predicting the tritium concentration in the air leaving an atmospheric detritiation dryer was modeled for designing a fixed bed dryer and preparing an advanced dryer control. In order to quantify the bed utilization and the dynamic capacity against an inlet humidity and a flow rate, a series of quantitative tests based on the break-through behavior were carried out in an isothermal fixed bed of synthetic zeolites such type as molecular sieve 4A, 5A, 13X and mordenite. The amount of water vapor breaking during the adsorption was estimated to give a breakthrough capacity at the various inlet flow rates and humidity conditions. The molecular sieve 13X exhibited a better adsorption performance at a given bed height.

  • PDF

Development of Ion Exchanger for Water Treatment (수처리를 위한 Ion 교환제의 개발)

  • 허남호;김상수;박병윤
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.143-148
    • /
    • 1991
  • This study was carried out to develop the low-priced adsorbent by synthesizing the zeolite of high cation exchange capacity with the natural zeolite and to examine the adsorbing ability of this zeolite. The dominant clay minerals were clinoptilolite and mordenite in natural zeolite, while phillipsite in the synthesized zeolite. Adsorption reaction of $NH_4^{+}$on zeolite was reached equilibrium after 2 hrs. The amount of adsorption was increased with increasing the concentration of $NH_4^{+}$or the pH of suspension. The cation exchange capacity of zeolite was slightly decreased below pH 4.0 by acidic treatment. It was estimated that the ability of the synthesized zeolite to remove noxious ions was better than that of the natural zeolite.

  • PDF