• Title/Summary/Keyword: H-G model

Search Result 1,727, Processing Time 0.029 seconds

Inhibitory Effects of Temperature, pH, and Potassium Sorbate against Natural Microflora in Strawberry Paste during Storage (저장중 온도, pH, potassium sorbate를 이용한 딸기 paste의 natural microflora의 증식억제 효과)

  • Cho, Joon-Il;Ha, Sang-Do;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.355-360
    • /
    • 2004
  • Residual contamination levels of natural microflora in strawberries were evaluated. Approximate counts of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were 8, 2, and 3 log CFU/g, respectively, whereas those of Escherichia coli and yeasts/molds were under the detection limit (<10 cells/g). Growth inhibition degrees of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were also evaluated based on three hurdles of preservative, storage temperature, and pH of strawberry paste prepared as model system. Strawberry paste was stored at low ($4^{\circ}C$), room ($20^{\circ}C$), and high ($37^{\circ}C$) temperatures. Potassium sorbate was added as a preservative up to 0.1%. Acidity of strawberry paste was adjusted to pH 4 or 7. During 7-day storage, inhibitory effects of the hurdles against bacterial groups were: storage temperature > pH of strawberry paste > addition of potassium sorbate. Combination of three hurdles most effectively inhibited growth of residual microflora.

Correlation analysis of variables and construction of experimental model for a cement grinding process (시멘트 분쇄공정에서의 변수 상관관계 분석 및 실험모델 구성)

  • Hwang, I. Y.;Bang, S. H.;Kim, G. B.;Lee, H. D.;Jeon, G.;Lee, W. K;Lee, K. S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.576-581
    • /
    • 1993
  • Grinding in the cement industry is a very energy-exacting process, therefore it is essential that these systems should operate with the highest possible efficiency. But, Cement grinding process is a complicated nonlinear system with large dead time, very noisy signal and many stochastic disturbances. So, it is difficult to develope mathematic process model. This paper presents correlation analysis of process variables and construction of experimental model for a ball mill grinding process.

  • PDF

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

Moisture Sorption Characteristics and a Prediction Model of Anchovy Powder with Particle Size (입자크기에 따른 분말멸치의 흡습특성 및 예측모델)

  • Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.513-518
    • /
    • 2010
  • This study was carried out to estimate the moisture sorption characteristics and prediction model of anchovy powders with different particle size as above 80 mesh, 80-60 mesh and 40-60 mesh. The equilibrium moisture content had higher values at lower storage temperatures, and higher water activity. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than that of BET equation. The estimated monolayer moisture content was 0.024-0.052 g $H_2O/g$ dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. The fitness of the isotherm curve was shown to be in the order of Khun, Halsey, Caurie and Oswin model. The prediction model equations for the moisture content were established by ln(time), water activity, and temperature, respectively. The model equation will be helpful for future work on drying and storage of anchovy powder.

Optimization of Submerged Culture Conditions for the Growth Increase of Ginseng Adventitious Root Containing Germanium (게르마늄 함유 인삼 부정근의 생장 증대를 위한 액체배양 조건의 최적화)

  • Chang, Eun-lung;Oh, Roon-II
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.143-148
    • /
    • 2009
  • This study was carried out to detennine the optimal submerged culture conditions for the growth increase of ginseng adventitious roots containing germanium by means of a fractional factorial design with four factors and three levels, using the response surface methodology (RSM). The ginseng (Panax ginseng CA. Meyer) adventitious roots were induced by plant growth regulators and cultured in a liquid SH medium. The effects of various $GeO_2$ and phosphoric acid ($H_3P0_4$) concentrations in the medium, $GeO_2$ addition time and the pH of the medium on the fresh weight of the ginseng adventitious roots were investigated. The optimum pH of the medium and the phosphoric acid concentration detennined by the partial differentiation of the model equation were 4.7 and 6.0 roM, respectively. The predicted optimal $GeO_2$ concentration was 10 ppm and the $GeO_2$ addition time did not affect the growth of ginseng adventitious roots. Under these conditions, the growth of the ginseng adventitious root containing germanium was predicted to be 2.47 g.

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

The Development of New UPFG Steady-State Model using Transmission Line Constant G. B (UPFC가 계통에 미치는 영향을 선로정수 G, B의 함수로 표현한 새로운 UPFC 정태 해석모델 개발)

  • Jeon, D.H.;Kim, T.G.;Chu, J.B.;Kim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1167-1169
    • /
    • 1999
  • This paper presents the new unified power flow controller(UPFC) load flow algorithm using UPFC transmission line constant model. The UPFC transmission line constant model represents a function of transmission line constant(G.B) UPFC's effect in power system. It can easily be incorporated in a load flow program. The algorithm is suited for monitoring the power system state as well as determining the magnitude and Phase angle of UPFC serial voltage source.

  • PDF