• Title/Summary/Keyword: H형강재

Search Result 28, Processing Time 0.024 seconds

A Study on the Determination of Required Fire Protection Thickness Considering Steel Section Shape (강재단면형상을 고려한 소요 내화피복 두께 산정에 관한 연구)

  • Kim, Hae-Soo;Kang, Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5910-5916
    • /
    • 2011
  • Surface area of the steel member exposed to fire differs according to type and size of the section and the kind of the member, which shows a big difference in the temperature rise of the steel by fire. The section factor ($H_p$/A) is determined by factors such as type, size, and member of the steel and type of the fire protection material, and it is the criteria in determining thickness of the fire protection material. This study showed that the size of the steel increase regardless of the steel type, the section factor decrease. In the results on fire protection thickness of the steel according to the section factor, the efficiency of 1 hour fire protection was lower from 30 to 50% than the criteria. And there is the member, which have the thickness lower the minimum 27% in 2 hour fire protection, but it generally approached in the criteria. In case of H-shape steel, the efficiency of 3 hour fire protection was suitable for the criteria, but rectangular hollow steel section and circular hollow steel section were higher (5.0-17.5%) than the criteria.

A Study on Compressive Strength of Built-up H Shaped Columns Fabricated with HSA800 High Performance Steels (건축구조용 고성능강(HSA800) 용접 H형단면 기둥의 압축강도에 관한 연구)

  • Kim, Tae Soo;Lee, Myung Jae;Oh, Young Suk;Lee, Kang Min;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.627-636
    • /
    • 2012
  • Recently, high performance(strength) steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper is a series of basic study for the design specification of structural members using high performance steel, material properties of high performance rolled steel building structures; material properties of HSA800 steel was compared with the requirements of Korean Standards(KS) for HSA800. Welded H-shape stub columns with variables of width-to-thickness ratios are planned in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio and uniaxial compressive tests are carried out. In addition, the buckling behaviors of stub columns obtained finite element analysis were compared with those of test results.

Experiments on the Composite Action of Steel Encased Composite Column (강재 매입형 합성기둥의 합성작용에 관한 실험)

  • Min Jin;Jung In-Keun;Shim Chang-Su;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.393-400
    • /
    • 2005
  • Steel encased composite columns have been used for buildings and piers of bridges. Since the column section for the pier is relatively larger than that of building columns, economical steel ratio needs to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bond and friction. However, the behavior of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Bond strength obtained from the tests showed considerably higher value than the design value. Confinement, mechanical interlock and stud connectors Increased the shear strength and these values can be used effectively to obtain composite action of Steel Reinforced Concrete(SRC) columns.

Compressive Strength and Residual Stress Evaluation of Stub Columns Fabricated of High Strength Steel (고강도강재 단주의 압축강도 및 잔류응력 평가)

  • Lee, Cheol-Ho;Kim, Dae-Kyung;Han, Kyu-Hong;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • In this study, stub columns subjected to concentrical and eccentrical loads were tested to check the applicability of the current local stability criteria (KBC2009, AISC2005) to 800MPa high-strength steel (HSA800). The key test variables in the concentrically loaded tests included the plate-edge restraints and the width-to-thickness ratio normalized by the yield strength of steel. Specimens made of ordinary steel (SM490) were also tested for comparative purposes. Eccentrically loaded stub column tests were conducted for a range of the P-M combinations by controlling the loading eccentricity. All the concentrically loaded specimens with non-compact and slender sections developed sufficient strengths according to the current local stability criteria. All the eccentrically loaded specimens with non-compact H sections also exhibited a sufficient P-M interaction strength that was even higher than that of compact H- section counterparts. Residual stresses were also measured by using the non-destructive indentation method to demonstrate their dependency or independency on the steel material's yield strength. The measured results of this study also indicated that the magnitude of residual stresses bears no strong relation to the yield strength of the steel material.

The Specified Minimum Yield Stress of SM570TMC in Composite Columns (SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구)

  • Lee, Myung Jae;Oh, Young Suk;Lee, Eun Teak
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2008
  • This paper aims to evaluate the yield stress of SM570TMC concrete-filed H-shape steel columns subjected to axial force. These columns were evaluated and compared using quasi-static tests. The displacements and the axial loads column specimens were measured during the tests, and test results showed that the yield stress of concrete-filed H-shape steel columns subjected to axial load could be predicted using the previously proposed yield stress of steel columns.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

The design of V shape with 3 dimensional suspension foot bridge (V형 주탑 3차원 보도현수교의 설계)

  • Shin, Sang-Hoon;Ko, Young-Kon;Lee, Eui-Taek;Seo, Yong-Kyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.214-217
    • /
    • 2011
  • 두가현수교는 2010년 8월 집중호우로 인해 유실된 교량을 복구하기 위한 과업으로서 향후 재발방지를 위해 중앙 경간장을 증가시켜 통수단면적을 추가확보하고, 교량 여유고를 상향시켜 수해에 대비한 견고한 교량으로 계획하였다. 또한 보행자의 통행을 위한 보도육교의 특성을 고려하여 지역의 관광자원이 될 수 있도록 중앙경간 125m의 V형 주탑 3차원 보도현수교로 설계하였다. 보강거더는 H-Beam을 이용하여 자재 수급 및 취급이 용이하며 강재 바닥판을 적용하여 보다 경량화된 보강거더를 적용함으로써 주케이블의 장력 감소에도 기여하도록 하였으며, 행어정착을 위한 별도의 정착거더를 채택한 ${\pi}$형식을 채택하여 풍동실험을 통해 내풍 안정성을 확인하였다. 주케이블 및 행어는 미관, 구조적 안정성, 유지관리성 및 가설의 용이함을 고려하여 PE를 피복한 PWS케이블을 선정하였다. 경관을 고려한 V형 주탑을 이용한 3차원 케이블을 채택하여 지역의 상징물을 표현하였으며 기초의 규모를 최소화 하였다. 또한 H형 및 A형 주탑과의 비교를 통해 V형 주탑 교량의 특성을 검토하였다.

  • PDF

A Study on the Material Properties and Welding Performance of Built-up H-beam (Built-up H형강의 소재특성 및 용접성능에 관한 연구)

  • Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2018
  • The use of a built-up H-beam (BH) that can easily manufacture a section is increasing. This is a basic study on standardization of BH. It confirmed the material properties of SM490 and SM520 steel such as yield strength, tensile strength, elongation, charpy absorbed energy, and else. The six BH specimens were manufactured with single-SAW or tandem-SAW. The welding performance was confirmed by collecting the macroscopic specimen and T-bar tensile specimen form the BH. As a result of the material property test, the properties of SM490 and SM520 which are made in Korea both satisfied the KS. As a result of the welding performance experiment, it is determined that the weld zone of BH has sufficient welding performance. Therefore, they are determined that the SM490 and SM520 steel are a proper material of BH, and the single-SAW and the tandem-SAW show a sufficient welding performance.

Optimal Shear Strength Enhancement using Corrugated CFRP Panel for H beam with Slender Web (세장판 복부를 갖는 H형 보의 파형 CFRP 패널을 이용한 최적 전단보강)

  • Ga-Yoon Park;Min-Hyun Seong;Jin-Kook Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.10-19
    • /
    • 2024
  • In this study, FEM analysis was performed with the goal of optimal design of corrugated CFRP panels reinforcing H-shaped beams with slender plate webs. The buckling reinforcement performance of corrugated CFRP panels according to various specifications was evaluated, and in particular, a new reinforcement method was proposed by analyzing the effect of the ratio of vertical reinforcement according to the net height of the abdomen of the H-type beam on the location of the first elastic buckling mode. To minimize the amount of CFRP used, the attachment angle was set to 45 degrees. Furthermore, parameter analysis was performed according to changes in the specifications of the corrugated CFRP panel, and the buckling reinforcement performance of the corrugated CFRP panel was evaluated through the ductility factor. In addition, we attempted to use the material efficiently by simultaneously considering the maximum load and ductility factor along with the volume of the corrugated CFRP panels. It was confirmed that the model with two or three-layer CFRP laminate have a high ductility factor and efficient use of materials, and that the buckling reinforcement performance is predominantly affected by the length and height of the corrugated CFRP panel rather than the width.

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.