DOI QR코드

DOI QR Code

Compressive Strength and Residual Stress Evaluation of Stub Columns Fabricated of High Strength Steel

고강도강재 단주의 압축강도 및 잔류응력 평가

  • Received : 2011.09.20
  • Accepted : 2011.12.16
  • Published : 2012.02.27

Abstract

In this study, stub columns subjected to concentrical and eccentrical loads were tested to check the applicability of the current local stability criteria (KBC2009, AISC2005) to 800MPa high-strength steel (HSA800). The key test variables in the concentrically loaded tests included the plate-edge restraints and the width-to-thickness ratio normalized by the yield strength of steel. Specimens made of ordinary steel (SM490) were also tested for comparative purposes. Eccentrically loaded stub column tests were conducted for a range of the P-M combinations by controlling the loading eccentricity. All the concentrically loaded specimens with non-compact and slender sections developed sufficient strengths according to the current local stability criteria. All the eccentrically loaded specimens with non-compact H sections also exhibited a sufficient P-M interaction strength that was even higher than that of compact H- section counterparts. Residual stresses were also measured by using the non-destructive indentation method to demonstrate their dependency or independency on the steel material's yield strength. The measured results of this study also indicated that the magnitude of residual stresses bears no strong relation to the yield strength of the steel material.

본 연구에서는 인장강도 800MPa급 고강도강재(HSA800)의 단주 중심압축실험과 편심압축실험을 통해 균등압축과 휨-압축 부재의 강도를 평가하여 현행 강구조기준(KBC2009, AISC2005)의 적용성 여부를 검토하였다. 또한 잔류응력의 계측을 통하여 강재 항복강도와 잔류응력과의 상관성 여부도 검토하였다. 고강도강재와 일반강재의 국부좌굴 거동 차이의 여부를 확인하기 위하여 중심압축실험에 SM490 강재로 제작된 비교실험체도 포함시켰다. 강도로 무차원화한 판폭두께비와 판 단부의 지지조건을 주요변수로 하여 실험을 실시하였다. 편심압축실험은 HSA800 강재만을 대상으로 하였으며, 휨-압축의 조합력을 받는 부재의 P-M 상관관계를 알아보기 위해 가력 편심거리를 조정하여 다양한 P-M 조합에 대해 강도평가 실험을 수행하였다. 잔류응력은 중심압축실험에 사용된 H형단면 실험체를 대상으로 비파괴실험법인 압입법에 의해 가력 이전에 그 크기와 분포를 측정하였다. 실험결과 중심압축을 받는 모든 HSA800 단주는 판 단부의 지지조건 및 판폭두께비 조건에 따른 현행 강구조기준의 설계강도를 충분히 발휘하였다. 편심압축을 받는 실험체 역시 현행 설계기준의 P-M 상관관계를 충분히 안전측으로 충족하였다. 본 연구에서도 잔류응력의 크기는 강재의 항복강도와 무관하다는 선행연구결과와 합치하는 잔류응력 측정값이 얻어졌다.

Keywords

References

  1. 대한건축학회(2009) 2009 KBC: 건축구조기준 및 해설.
  2. 김종락 등(2011) 800MPa 고강도강 설계기준제정연구, 연구보고서, 한국강구조학회.
  3. 이윤희, 지원재, 손동일, 장재일, 권동일(2002) 응력 상호작용과 연속압입기법을 이용한 SS400 강봉의 굽힘 잔류응력 평가, 대한금속․재료학회지, 대한금속․재료학회, 제40권, 제10호, pp. 1042-1047.
  4. 지식경제부 기술표준원(2008) 금속 재료 인장 시험 방법 (KS B 0802:2003), 산업표준심의회 기계기본요소부회.
  5. AISC (2005) Specification for Structural Steel Buildings, American Institute of Steel Construction, Inc., Chicago, Illinois, USA.
  6. ASTM E384-11 (2011) Standard Test Method for Knoop and Vickers Hardness of Materials, American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  7. BSK94 (1997) Boverkets Handbok on Stalkonstructioner, Boverket, Byggavdelningen, Sweden.
  8. Galambos, T.V. (1998) Guide to Stability Design Criteria for Metal Structures, 5th edition, Wiley, USA.
  9. Nishino, F., Ueda, Y., and Tall, L. (1966) Experimental Investigation of the Buckling of Plates with Residual Stress, Fritz Engineering Laboratory Report No. 290.3, Lehigh Univalsity, Bethlehem, Pennsylvania, USA.
  10. Ramussen, K.J.R. and Hancock, G.J. (1992) Plate Slenderness Limits for High Strength Steel Sections, Journal of Constructional Steel Research, Elsevier, Vol. 23, Issues 1-3, pp. 73-96. https://doi.org/10.1016/0143-974X(92)90037-F
  11. Ricles J.M., Sause R., and Green P.S. (1998) High- Strength Steel: Implications of Material and Geometric Characteristics on Inelastic Flexural Behavior, Engineering Structures, Vol. 20, Issues 4-6, pp. 323-335. https://doi.org/10.1016/S0141-0296(97)00024-2
  12. Usami, T. and Fukumoto, Y. (1982) Local and Overall Buckling of Welded Box Columns, Journal of the Structural Divisions, ASCE, Vol. 108, No. 3, pp. 525-542.

Cited by

  1. An Experimental Study on the Structural Behavior of Stub Columns with HSA800 High-strength Steels under Eccentric Loads vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.289
  2. Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel vol.19, pp.2, 2015, https://doi.org/10.11112/jksmi.2015.19.2.010
  3. A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.335
  4. Application Study of High-Strength Steel(HSA800) for the Special Structure vol.14, pp.2, 2014, https://doi.org/10.9712/KASS.2014.14.2.069
  5. Evaluation on Applicability of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steel Considering Local Buckling vol.25, pp.3, 2013, https://doi.org/10.7781/kjoss.2013.25.3.223
  6. Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.361
  7. Structural response and continuous strength method design of slender stainless steel cross-sections vol.140, 2017, https://doi.org/10.1016/j.engstruct.2017.02.044
  8. Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams vol.25, pp.2, 2013, https://doi.org/10.7781/kjoss.2013.25.2.115
  9. Local Buckling Behavior of Stub H-shaped Columns Fabricated with HSA800 High Performance Steels under Concentric Axial Loading vol.25, pp.3, 2013, https://doi.org/10.7781/kjoss.2013.25.3.289
  10. A Study on Compressive Strength of Built-up H Shaped Columns Fabricated with HSA800 High Performance Steels vol.24, pp.6, 2012, https://doi.org/10.7781/kjoss.2012.24.6.627
  11. Local buckling in the stub columns fabricated with HSA800 of high performance steel vol.13, pp.3, 2013, https://doi.org/10.1007/s13296-013-3005-2
  12. A comparative study on stub columns with various steel grades subjected to concentric axial loading vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3007-3
  13. Study on the Flexible Strength of U-shape Hybrid Composite Beam vol.24, pp.5, 2012, https://doi.org/10.7781/kjoss.2012.24.5.521
  14. An Experimental Evaluation of Structural Performance for High Strength Steel Stub Columns under Eccentric Loads vol.764-765, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.764-765.111
  15. Structural Performance Evaluation of Built-Up Stub Steel Column with Various Steel Grades under Concentric Loading vol.764-765, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.764-765.127
  16. Numerical Study of High-strength Steel CHS X-joints Including Effects of Chord Stresses vol.30, pp.2, 2018, https://doi.org/10.7781/kjoss.2018.30.2.115
  17. 중심압축력을 받는 건축구조용 고성능강(HSA800) 용접 각형강관 압축재의 국부좌굴 vol.24, pp.4, 2012, https://doi.org/10.7781/kjoss.2012.24.4.435
  18. 800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동 vol.24, pp.4, 2012, https://doi.org/10.7781/kjoss.2012.24.4.479
  19. HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험 vol.26, pp.5, 2014, https://doi.org/10.7781/kjoss.2014.26.5.407
  20. 편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구 vol.26, pp.5, 2012, https://doi.org/10.7781/kjoss.2014.26.5.453
  21. 중심압축을 받는 고강도강 중간주의 좌굴강도 평가 vol.27, pp.4, 2012, https://doi.org/10.7781/kjoss.2015.27.4.377