• Title/Summary/Keyword: H/sub ∞/ control

Search Result 793, Processing Time 0.033 seconds

Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction (액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향)

  • Cho, Do-Hyung;Kim, Woo-Sung;Shin, Jae-Ho;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ in the $K_2O-Li_2O-Al_2O_3$ ternary system was synthesized using aluminum nitrate solution as a starting material. For the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$, raw materials with chemical composition of $0.84K_2O{\cdot}0.082Li_2O{\cdot}5.2Al_2O_3$ were mixed in solution state. The effects of dispersant and solution-pH were investigated in minimizing the particle size and on the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$. Ethanol was used for a dispersant, and $NH_4OH$ solution and nitric acid were added for pH adjustment. The solution pH was increased from 1.0 to 7.5 by 0.5 increments. Each sample was calcined at $1200^{\circ}C$ for 2 h and characterized with X-ray diffraction and particle size analyzer. The pH of solution significantly effected both particle size and phase formation, while the addition of ethanol only effected particle size. The synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ was favored by addition of nitric acid (for pH control).

Size control of Au nanoparticles by pH and effect of surface enhanced raman spectroscopy (SERS) (pH에 의한 골드나노입자의 사이즈 조절과 표면라만증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.379-382
    • /
    • 2019
  • Synthesis of gold nanoparticles (NPs) made an aqueous environment via the reduction of HAuCl4 by ascorbic acid (AC) with the surfactant of polyvinylpyrrolidone (PVP). Highly monodisperse gold particles with size ranges from 4 to 20 nm were prepared in high-yield by pH control. The synthesized gold nanoparticles were analyzed for structural and optical properties using transmission electron microscopy (TEM) and UV-vis spectroscopy. In this study, we could reveal that the prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties, and their SERS activities depends on size.

Estimation of CO2 Emission from a Eutrophic Reservoir in Temperate Region (온대지역 부영양 저수지의 이산화탄소 배출량 산정)

  • Chung, Se-Woong;Yoo, Ji-Su;Park, Hyung-Seok;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2016
  • Many large dams have been constructed for water supply, irrigation, flood control and hydropower in Korea for the last century. Meanwhile, recent studies indicated that the artificial reservoirs impounded by these dams are major sources of carbon dioxide (CO2) to the atmosphere and relevant to global budget of green house gases. However, limited information is available on the seasonal variations of CO2 evasion from the reservoirs located in the temperate monsoon regions including Korea. The objectives of this study were to estimate daily Net Atmospheric Flux (NAF) of CO2 in Daecheong Reservoir located in Geum River basin of Korea, and analyze the influencing parameters that characterize the variation of NAF. Daily pH and alkalinity (Alk) data collected in wet year (2012) and dry year (2013) were used for estimating the NAFs in the reservoir. The dissolved inorganic carbon (DIC) was computed using the pH and Alk measurements supposing an equilibrium state among the carbonate species. The results showed seasonal variations of NAF; negative NAFs from May to October when the primary production of the reservoir increased with water temperature increase, while positive NAF for the rest of the period. Overall the reservoir acted as sources of CO2 to the atmosphere. The estimated NAFs were 2,590 and 771 mg CO2 m-2d-1 in 2012 and 2013, respectively, indicating that the NAFs vary a large extent for different hydrological years. Statistical analysis indicated that the NAFs are negatively correlated to pH, water temperature, and Chl-a concentration of the reservoir.

Growth of Si-Doped β-Ga2O3 Epi-Layer by Metal Organic Chemical Vapor Deposition U sing Diluted SiH4 (유기 금속 화학 증착법(MOCVD)의 희석된 SiH4을 활용한 Si-Doped β-Ga2O3 에피 성장)

  • Hyeong-Yun Kim;Sunjae Kim;Hyeon-U Cheon;Jae-Hyeong Lee;Dae-Woo Jeon;Ji-Hyeon Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.525-529
    • /
    • 2023
  • β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.

Roll-Pitch-Yaw Integrated H Controller Synthesis for High Angle-of-Attack Missiles

  • Choi, Byung-Hun;Kang, Seon-Hyeok;Kim, H. Jin;Won, Dae-Yeon;Kim, Youn-Hwan;Jun, Byung-Eul;Lee, Jin-Ik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.66-75
    • /
    • 2008
  • In this work, we explore the feasibility of roll-pitch-yaw integrated autopilots for high angle-of-attack missiles. An investigation of the aerodynamic characteristics of a surface-to-air missile is presented, which reveals the strong effects of cross coupling between the longitudinal and lateral dynamics. Robust control techniques based on $H_{\infty}$ synthesis are employed to design roll-pitch-yaw integrated autopilots. The performance of the proposed roll-pitch-yaw integrated controller is tested in high-fidelity nonlinear five-degree-of-freedom simulations accounting for kinematic cross-coupling effects between the lateral and longitudinal channels. Against nonlinearity and cross-coupling effects of the missile dynamics, the integrated controller demonstrates superior performance when compared with the controller designed in a decoupled manner.

Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening (이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Yung-Kug Kwon;Gum-Hwa Lee;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field (Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구)

  • Ji-Hye Lee;Sang-Min Lee;Young-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs

  • Kim, Yong Ju;Cho, Sung Bo;Song, Min Ho;Lee, Sung Il;Hong, Seok Man;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Chang, Se Yeon;An, Jae Woo;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.291-301
    • /
    • 2022
  • The objective of this study was to evaluate the effects of different mixing ratios of Bacillus licheniformis and Bacillus subtilis in diets on nutrient digestibility, fecal microflora, and odor gas emissions of growing pigs. A total of four crossbred ([Landrace × Yorkshire] × Duroc) barrows with average body weight (BW) of 41.2 ± 0.7 kg were randomly allotted four diets over four periods in a 4 × 4 Latin square design. Treatments were as follows: Control (CON, basal diet), CON + 0.2% probiotic complex (L4S6, B. licheniformis and B. subtilis at a 4:6 ratio), CON + 0.2% probiotic complex (L5S5, B. licheniformis and B. subtilis at a 5:5 ratio), CON + 0.2% probiotic complex (L6S4, B. licheniformis and B. subtilis at a 6:4 ratio). Dietary probiotic supplementation showed higher crude protein (CP) digestibility values and lower Escherichia coli counts in fecal samples than the CON group (p < 0.05). There was no significant difference in NH3 or H2S emission until day 3. The positive effect of H2S and NH3 emissions was detected earlier with the L4S6 and L5S5 compared to the L6S4, which had a lower ratio of B. subtilis. Both the L4S6 and L5S5 probiotic complexes significantly decreased the fecal H2S and NH3 emission in days 4 and 6 (p < 0.05). On day 7, all probiotic complexes decreased (p < 0.05) H2S and NH3 emissions than the CON group. Our results agreed that the dietary supplementation of Bacillus licheniformis and Bacillus subtilis complexes in growing pigs can significantly improve CP digestibility and reduce fecal E. coli counts, NH3 and H2S emissions. Notably, the higher mixing ratio of Bacillus subtilis in probiotic supplementation is more effective in reducing the odor of manure.

MSCs-Derived miR-150-5p-Expressing Exosomes Promote Skin Wound Healing by Activating PI3K/AKT Pathway through PTEN

  • Cheng Xiu;Huining Zheng;Manfei Jiang;Jiaxu Li;Yanhong Zhou;Lan Mu;Weisong Liu
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Background and Objectives: The goal of this study was to investigate the mechanism of mesenchymal stem cell (MSC)-derived microRNA (miR)-150-5p-expressing exosomes in promoting skin wound healing through activating PI3K/AKT pathway by PTEN. Methods and Results: Human umbilical cord (HUC)-MSCs were infected with miR-150-5p overexpression and its control lentivirus, and HUC-MSCs-derived exosomes (MSCs-Exos) with stable expression of miR-150-5p were obtained. HaCaT cells were induced by H2O2 to establish a cellular model of skin injury, in which the expression of miR-150-5p and PTEN and the phosphorylation of PI3K and AKT were evaluated. HaCaT cells were transfected with pcDNA3.1-PTEN or pcDNA3.1 and then cultured with normal exosomes or exosomes stably expressing miR-150-5p. Cell proliferation was inspected by CCK-8. Cell migration was detected by scratch test and cell apoptosis by flow cytometry. The starBase tool was used to predict the binding site of miR-150-5p to PTEN. Dual-luciferase reporter assay and RIP assay were applied to assess the interaction between miR-150-5p and PTEN. In H2O2-induced HaCaT cells, the miR-150-5p expression decreased, and PTEN expression increased in a concentration-dependent manner. MSCs-Exos promoted the growth and migration of H2O2-induced HaCaT cells and inhibited their apoptosis. In addition, overexpression of exosomal miR-150-5p enhanced the protective effect of MSCs-Exos on H2O2-induced HaCaT cells; PTEN overexpression in HaCaT cells partially restrained miR-150-5p-mediated inhibition on H2O2-induced injury in HaCaT cells. PTEN was a target gene of miR-150-5p. MiR-150-5p regulated PI3K/AKT pathway through PTEN. Conclusions: MSCs-derived miR-150-5p-expressing exosomes promote skin wound healing by activating PI3K/AKT pathway through PTEN.