• Title/Summary/Keyword: Gwangneung Forest

Search Result 120, Processing Time 0.025 seconds

Throughfall, Stemflow and Interception Loss of the Natural Old-growth Deciduous and Planted Young Coniferous in Gwangneung and the Rehabilitated Young Mixed Forest in Yangju, Gyeonggido(I) - with a Special Reference on the Results of Measurement - (광릉(光陵) 활엽수(闊葉樹) 천연노령림(天然老齡林)과 침엽수(針葉樹) 인공유령림(人工幼齡林) 그리고 양주(楊洲) 사방지(砂防地) 혼효유령림(混淆幼齡林)의 수관통과우량(樹冠通過雨量), 수간유하량(樹幹流下量) 그리고 차단손실량(遮斷損失量)에 관하여(I) - 실험적(實驗的) 측정결과(測定結果)를 중심(中心)으로 -)

  • Kim, Kyongha;Jun, Jaehong;Yoo, Jaeyun;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.488-495
    • /
    • 2005
  • This study was conducted to understand the influences of forest structure on throughfall, stemflow and interception loss. The study plots included the natural old-growth deciduous, Pinus koraiensis and Abies holophylla forests in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido. The Pinus koraiensis and Abies hotophylla had been planted in 1976. The rehabilitated young mixed forest had been established to control erosion in 1974. Total and net rainfall were monitored from March, 2003 to October, 2004. Tipping bucket rain gauge recorded total rainfall. Throughfall and stemflow were measured by custom-made tipping bucket and CR10X data logger at each $10m{\times}10m$ plots at intervals of 30 minutes. Interception loss in the Pinus koraiensis plot were most as 37.2% of total rainfall and least as 22.6% in the rehabilitated young mixed forest. Stemflow in the rehabilitated young mixed forest was 10.7% of total rainfall and stemflow in the Pinus koraiensis plot was 2.4%. The average throughfall ratio ranged from 66% to 77% depending on the canopy coverage. The relationship of stemflow and total rainfall represented in a linear regression equation though the variation of data was large. The ratio of stemflow-conversion was 2% of total rainfall in the Pinus koraiensis plot and 12% in the rehabilitated young mixed forest, respectively. The stem storage of the natural old-growth deciduous was the largest of 0.21 mm whereas that of the Pinus koraiensis plot was the least of 0.003 mm. A deciduous forest produced stemflow more than a coniferous forest due to a smooth bark and steeply angled branches. Interception loss of all study plots increased linearly as total rainfall increased. The distribution of interception loss data related in total rainfall became wider in a deciduous forest than a coniferous. It resulted from seasonality of leaf area index in a deciduous forest. As considered above results, it was confirmed that there were great differences of throughfall, stemflow and interception loss depending on forest stand structures. The simulation model for predicting interception loss must have parameters such as forest stand characteristics and LAI in order to describe the influence of forest structure on interception loss.

Effects of Forest Practices on the Changes of Characteristics of Forest Stand, Mesopore Ratio and Soil Water Contents in Pinus koraiensis Stands (산림시업이 잣나무림의 생장, 토양조공극 및 토양함수능에 미치는 영향)

  • Jun, Jaehong;Jeong, Yongho;Choi, Hyung Tae;Yoo, Jae-Yun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2008
  • This study was conducted to investigate the influence of thinning and pruning on characteristics of forest stand, mesopore ratio and soil water content at the Pinus koraiensis stands in Gwangneung, Gyeonggido. The Pinus koraiensis had been planted in 1976 and thinning and pruning were carried out in 1996. A sample area survey was conducted at experimental plots (thinned and unthinned) in 1998 and 2005, and mesopore ratio and soil water content have been monitored from 2000 to present. Average tree height of the thinned plot increased from 10.9m to 13.2m and from 10.3m to 12.8m for the unthinned plot. Average D.B.H of the thinned plot increased from 15.9cm to 21.1cm and from 14.5cm to 16.7cm for the unthinned plot during the period 1998-2005. Crown density at the thinned plot increased from 81.5% to 95.0% and from 89.5% to 95.0% for the unthinned plot during the period 1998-2005. Mesopore ratio (pF2.7) of A layer soil at the thinned plot was 40.1% while that of the unthinned plot was 37.3%. Changes of mesopore ratio at unthinned plot were not associated with stand age, but those at thinned plot had increased and then decreased, showing declining of the practice effect. Average soil water content at the thinned plot were 23.7% and 22.4% for the unthinned plot. Soil watercontents at both plots have been increased with increase in stand age. But the difference of soil watercontent at each plot has been decreased, especially at the depth of 10cm.

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.

Carbon Storage of Pure and Mixed Pine-Deciduous Oak Forests in Gwangneung, Central Korea

  • Lee, Sue-Kyoung;Son, Yo-Whan;Noh, Nam-Jin;Yoon, Tae-Kyung;Lee, Ah-Reum;Seo, Kyung-Won;Hwang, Jae-Hong;Bae, Sang-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.237-247
    • /
    • 2009
  • This study was conducted to determine the carbon (C) contents in different mixed stands of P. dens if/ora and deciduous oak species in Gwangneung, central Korea. Five mixed stands with different ratios of P. densiflora and deciduous oak species were chosen based on the basal area of all trees ${\geq}\;5cm$ DBH: pure P. densiflora (P100D0), 70% P. densiflora + 30% deciduous oak species (P70D30), 44% P. densiflora + 56% deciduous oak species (P50D50), 37% P. densiflora + 63% deciduous oak species (P40D60), and 10% P. densiflora + 90% deciduous oak species (P10D90). Total C contents in the overstory (aboveground and belowground) vegetation were higher in the mixed stands (P70D30, P50D50, P40D60) than in the pure stands (P100D0, P10D90). Moreover, except for P40D60, C contents of forest floor (litter and coarse woody debris) were larger in the mixed stands (P70D30, P50D50) than in the pure stands. However, total soil C contents up to 30cm depth were highest in the pure deciduous oak stand than in the pure P. densiflora stand and mixed stands. Total ecosystem C contents (Mg/ha) were 163.3 for P100D0, 152.3 for P70D30, 188.8 for P50D50, 160.2 for P40D60, and 150.4 for P10D90, respectively. These differences in total ecosystem C contents among the different mixed stands for P. densiflora and deciduous oak species within the study stands were attributed by the differences in vegetation development and forest management practices. Among the five study stands, the total ecosystem C contents were maximized in the 1:1 mixed ratio of P. densiflora and deciduous oak species (P50D50).

Analysis of Growth Characteristics and Aboveground Carbon Storage for Zelkova serrata Artificial Forests in Gwangneung Experimental Forest (광릉시험림 내 느티나무(Zelkova serrata) 인공림의 생장특성 및 지상부 탄소저장량 분석)

  • Kim, Hyun-Seop;Bae, Sang-Won;Lee, Sang-Tae;Hwang, Jae-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.144-152
    • /
    • 2010
  • This study was conducted to analyze the growth characteristics and aboveground carbon storage for old growth Zelkova serrata artificial forests (site1: age class IX, site2: age class VIII) in Gwangneung Experimental Forest. The trees were classified by crown classes for analyzing forest stand structure. The growth characteristics were analized through ringwidth increment by crown classes and stem analysis of dominant trees. There were a wide range of DBH (site1: 8~62 cm, site2: 14~40 cm) and height (site1: 8~26 m, site2: 12~26 m) distributions and revealed different growth characteristics by crown classes in both sites. The mean annual increment (MAI) of ringwidth for the last 5 years of dominant trees for site1 (3.3 mm) was higher than MAI of ringwidth of total growth period (2.3 mm) and MAI of ringwidth for the last 5 years of dominant trees for site2 (2.2 mm) was equal to MAI of ringwidth of total growth period (2.2 mm). Also, the growth increment of ringwidth by crown classes had significant differences between dominant tree and the others crown classes (p<0.01) in both sites. As a results of stem analysis of dominant trees in both sites, there were similar to their volume between site1 (1.106 $m^3$) and site2 (1.035 $m^3$). In spite of old age, the annual increment of volume has been increasing steadily until recent year. Meanwhile, total aboveground carbon storage of site1 (65.6 Mg C $ha^{-1}$) was higher than that of site2 (56.1 Mg C $ha^{-1}$). The proportion of dominant and co-dominant trees to total aboveground carbon storage was more than 90% and the greatest individual aboveground carbon storage by crown classes was dominant tree in all both sites. However, individual aboveground carbon storage of dominant tree in site1 had 0.054 Mg C $tree^{-1}$ more than site2 owing to the differences from average DBH of dominant trees by sites. We think that these results will contribute to the forest practice for Zelkova serrata artificial forests as a basic information.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Interactions and Changes between Sapflow Flux, Soil Water Tension, and Soil Moisture Content at the Artificial Forest of Abies holophylla in Gwangneung, Gyeonggido (광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양함수량의 변화와 상호작용)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Jeong, Yongho;Jeong, Changgi
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.496-503
    • /
    • 2005
  • This study was conducted to investigate the influences of sapflow flux on soil water tensions and soil moisture content at the Abies holophylla plots in Gwangneung, Gyeonggido, from September to October 2004. The Abies holophylla had been planted in 1976 and thinning and pruning were carried out in 1996 and 2004. Sapflow flux was measured by the heat pulse method, and soil water tension was measured by tensiometer at hillslope and streamside. Time domain reflectometry probes (TDR) were positioned horizontally at the depth of 10, 30 and 50 cm to measure soil moisture content. All of data were recorded every 30 minutes with the dataloggers. The sapflow flux responded sensitively to rainfall, so little sapflow was detected in rainy days. The average daily sapflow flux of sample trees was 10.16l, a maximum was 15.09l, and a minimum was 0.0l. The sapflow flux's diurnal changes showed that sapflow flux increased from 9 am and up to 0.74 l/30 min. The highest sapflow flux maintained by 3 pm and decreased almost 0.0 l/30 mm after 7 pm. The average soil water tensions were low ($-141.3cmH_2O$, $-52.9cmH_2O$ and $-134.2cmH_2O$) at hillslope and high ($-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$) at streamside. When the soil moisture content decreased after rainfall, the soil water tension at hillslope responded sensitively to the sapflow flux. The soil water tension decreased as the sapflow flux increased during the day time, whereas increased during the night time when the sapflow flux was not detected. On the other hand, there was no significant relationship between soil water tension and sapflow flux at streamside. Soil moisture content at hillslope decreased continuously after rain, and showed a negative correlation to sapflow flux like a soil water tension at hillslope. As considered results above, it was confirmed that the response of soil moisture tension to sapflow flux at hillslope and streamside were different.

Gridded Expansion of Forest Flux Observations and Mapping of Daily CO2 Absorption by the Forests in Korea Using Numerical Weather Prediction Data and Satellite Images (국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출)

  • Kim, Gunah;Cho, Jaeil;Kang, Minseok;Lee, Bora;Kim, Eun-Sook;Choi, Chuluong;Lee, Hanlim;Lee, Taeyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1449-1463
    • /
    • 2020
  • As recent global warming and climate changes become more serious, the importance of CO2 absorption by forests is increasing to cope with the greenhouse gas issues. According to the UN Framework Convention on Climate Change, it is required to calculate national CO2 absorptions at the local level in a more scientific and rigorous manner. This paper presents the gridded expansion of forest flux observations and mapping of daily CO2 absorption by the forests in Korea using numerical weather prediction data and satellite images. To consider the sensitive daily changes of plant photosynthesis, we built a machine learning model to retrieve the daily RACA (reference amount of CO2 absorption) by referring to the climax forest in Gwangneung and adopted the NIFoS (National Institute of Forest Science) lookup table for the CO2 absorption by forest type and age to produce the daily AACA (actual amount of CO2 absorption) raster data with the spatial variation of the forests in Korea. In the experiment for the 1,095 days between Jan 1, 2013 and Dec 31, 2015, our RACA retrieval model showed high accuracy with a correlation coefficient of 0.948. To achieve the tier 3 daily statistics for AACA, long-term and detailed forest surveying should be combined with the model in the future.

Effect of Forest Growth and Thinning on the Long-term Water Balance in a Coniferous Forest (침엽수인공림에서 임분 성장 및 간벌이 장기 물수지에 미치는 영향)

  • Choi, Hyung-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Long-term annual water balances are analyzed for two forest catchments located in Gwangneung covered with forests of different types and ages. The water balance trends of the two catchments from 1982 to 2009 are compared to identify the effect of forest growth and thinning on the water balance in a planted coniferous forest catchment. According to the averaged annual precipitation and runoff for the four designated periods from 1982 to 2009, the water balance of the old natural broad-leaved forest catchment (GB) remained relatively unchanged. In contrast, the young planted coniferous forest catchment (GC) showed significant changes in the water balance due to the forest growing and thinning. The results showed that the catchment runoff decreases with increasing tree age whereas the forest thinning results in an increase in catchment runoff. The mean annual runoff from the catchment GC after thinning increased by 1.7 times, compared with the mean annual runoff before forest thinning. The mean annual runoff from the catchment GB was very stable throughout the period. However, such an effect of forest thinning appeared to last only for about 10 year-period, after which the water yield increment in the catchment GC disappeared. It indicates that the proper forest management should be reconsidered at the interval of 10 years to effectively reduce water loss and increase water yield in the planted coniferous forest.

Nutrient Use Strategy of Carpinus cordata Saplings Growing under Different Forest Stand Conditions (임분 조건이 다른 환경에서 하층식생으로 생육하는 까치박달(Carpinus cordata) 유목의 양분 이용 특성)

  • Kwon, Boram;Heo, Namjun;Shin, Hoyong;Kim, Hyun Seok;Park, Pil Sun;Yi, Myong Jong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.188-196
    • /
    • 2014
  • This study aimed to understand the nutrient absorption, usage and allocation of Carpinus cordata in different soil and light environments. Seasonal changes of foliar nitrogen, phosphorous, chlorophyll contents, leaf mass per area (LMA) and nutrient retranslocation rates were investigated for C. cordata saplings growing in a natural deciduous broadleaved forest and an Manchurian fir (Abies holophylla) plantation in Gwangneung, Kyunggido. The deciduous forest had lower leaf area, higher light penetration, and better soil fertility than the Manchurian fir forest. However, available soil phosphorous content in the deciduous forest was only one third of that in the Manchurian fir forest, which caused lower foliar phosphorous content and higher P retranslocation rate of C. cordata in the deciduous forest than that in the Mancurian fir forest. Soil nitrogen contents in the deciduous forest were higher than that in the Manchurian fir forest, however, no differences in foliar nitrogen content and retranslocation rate in C. cordata between the two stands were found. C. cordata in the Manchurian fir forest with high LAI throughout a year, had lower LMA, foliar nitrogen content and chlorophyll a/b, while had higher total chlorophyll content and chlorophyll/N than that in the deciduous forest. These results implied C. cordata under different environments are using different strategies for nutrient use and allocations.