• Title/Summary/Keyword: Gut Microbiota

Search Result 323, Processing Time 0.025 seconds

Isolation and identification of 18 unrecorded prokaryotic species from the intestinal tracts of aquatic animals in Korea

  • Lee, Jae-Yun;Jeong, Yun-Seok;Kim, Pil Soo;Hyun, Dong-Wook;Bae, Jin-Woo
    • Journal of Species Research
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Evidence highlighting the importance of gut microbiota in biodiversity conservation is growing; however, gut bacteria in South Korean wildlife have not been well identified. Using a culture-dependent isolation method, we identified the gut bacteria from Korean aquatic wildlife: the gazami crab (Portunus trituberculatus), Korean striped bitterling (Acheilognathus yamatsutae), oily bitterling (Acheilognathus koreensis), leopard mandarin fish (Siniperca scherzeri), Korean dark chub (Zacco koreanus), diving beetle (Cybister lewisianus), spotted steed (Abbottina springeri), and Korean spotted sleeper (Odontobutis obscura interrupta). We identified 18 strains previously unrecorded in South Korea by comparing 16S rRNA gene sequences of isolates against the EzBioCloud and National Institute of Biological Resources(NIBR) databases. The isolated strains belong to the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. We also assessed for phylogenetic relatedness, Gram-stain reaction, colony and cell morphology, and biochemical characteristics. Basic information and 16S rRNA gene sequences of the isolates were registered in NIBR, and NIBR accession numbers are provided.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

Microbial composition in different gut locations of weaning piglets receiving antibiotics

  • Li, Kaifeng;Xiao, Yingping;Chen, Jiucheng;Chen, Jinggang;He, Xiangxiang;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Objective: The aim of this study was to examine shifts in the composition of the bacterial population in the intestinal tracts (ITs) of weaning piglets by antibiotic treatment using high-throughput sequencing. Methods: Sixty 28-d-old weaning piglets were randomly divided into two treatment groups. The Control group was treated with a basal diet without antibiotics. The Antibiotic group's basal diet contained colistin sulfate at a concentration of 20 g per ton and bacitracin zinc at a concentration of 40 g per ton. All of the pigs were fed for 28 days. Then, three pigs were killed, and the luminal contents of the jejunum, ileum, cecum, and colon were collected for DNA extraction and high-throughput sequencing. Results: The results showed that the average daily weight gain of the antibiotic group was significantly greater (p<0.05), and the incidence of diarrhea lower (p>0.05), than the control group. A total of 812,607 valid reads were generated. Thirty-eight operational taxonomic units (OTUs) that were found in all of the samples were defined as core OTUs. Twenty-one phyla were identified, and approximately 90% of the classifiable sequences belonged to the phylum Firmicutes. Forty-two classes were identified. Of the 232 genera identified, nine genera were identified as the core gut microbiome because they existed in all of the tracts. The proportion of the nine core bacteria varied at the different tract sites. A heat map was used to understand how the numbers of the abundant genera shifted between the two treatment groups. Conclusion: At different tract sites the relative abundance of gut microbiota was different. Antibiotics could cause shifts in the microorganism composition and affect the composition of gut microbiota in the different tracts of weaning piglets.

Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice

  • Qiu, Liang;Yang, Dong;Tao, Xueying;Yu, Jun;Xiong, Hua;Wei, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1491-1499
    • /
    • 2017
  • Trimethylamine N-oxide (TMAO), which is transformed from trimethylamine (TMA) through hepatic flavin-containing monooxygenases, can promote atherosclerosis. TMA is produced from dietary carnitine, phosphatidylcholine, and choline via the gut microbes. Previous works have shown that some small molecules, such as allicin, resveratrol, and 3,3-dimethyl-1-butanol, are used to reduce circulating TMAO levels. However, the use of bacteria as an effective therapy to reduce TMAO levels has not been reported. In the present study, 82 isolates were screened from healthy Chinese fecal samples on a basal salt medium supplemented with TMA as the sole carbon source. The isolates belonged to the family Enterobacteriaceae, particularly to genera Klebsiella, Escherichia, Cronobacter, and Enterobacter. Serum TMAO and cecal TMA levels were significantly decreased in choline-fed mice treated with Enterobacter aerogenes ZDY01 compared with those in choline-fed mice treated with phosphate-buffered saline. The proportions of Bacteroidales family S24-7 were significantly increased, whereas the proportions of Helicobacteraceae and Prevotellaceae were significantly decreased through the administration of E. aerogenes ZDY01. Results indicated that the use of probiotics to act directly on the TMA in the gut might be an alternative approach to reduce serum TMAO levels and to prevent the development of atherosclerosis and "fish odor syndrome" through the effect of TMA on the gut microbiota.

Comparison between DNA- and cDNA-based gut microbial community analyses using 16S rRNA gene sequences (16S rRNA 유전자 서열 분석을 이용한 DNA 및 cDNA 기반 장내 미생물 군집 분석의 비교)

  • Jo, Hyejun;Hong, Jiwan;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.220-225
    • /
    • 2019
  • Studies based on microbial community analyses have increased in the recent decade since the development of next generation sequencing technology. Associations of gut microbiota with host's health are one of the major outcomes of microbial ecology filed. The major approach for microbial community analysis includes the sequencing of variable regions of 16S rRNA genes, which does not provide the information of bacterial activities. Here, we conducted RNA-based microbial community analysis and compared results obtained from DNA- and its cDNA-based microbial community analyses. Our results indicated that these two approaches differed in the ratio of Firmicutes and Bacteroidetes, known as an obesity indicator, as well as abundance of some key bacteria in gut metabolisms such as butyrate producers and probiotics strains. Therefore, cDNA-based microbial community may provide different insights regarding roles of gut microbiota compared to the previous studies where DNA-based microbial community analyses were performed.

The Roles of Dietary Polyphenols in Brain Neuromodulation (뇌 신경조절에서의 식이 폴리페놀 화합물의 역할)

  • Lee, Hyeyoung;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1386-1395
    • /
    • 2018
  • Over recent years, it has become evident that the central nervous system bidirectionally interacts with the gastrointestinal tract along the gut-brain axis. A series of preclinical studies indicate that the gut microbiota can modulate central nervous system function through a multitude of physiological functions. Polyphenols are ubiquitous plant chemicals included in foods such as fruits, vegetables, tea, coffee and wine, and their consumption is directly responsible for beneficial health effects due to antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, anticancer, vasodilating, and prebiotic-like effects. There is increasing evidence that dietary polyphenol can contribute to beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury as well as in cognitive functions. In this paper, we overview the neuroprotective role of dietary polyphenols especially focusing on the neuroinflammation and neurovascular function by interaction with the gut microbiome. Polyphenol metabolites could directly act as neurotransmitters crossing the blood-brain barrier and modulating the cerebrovascular system or indirectly modulating gut microbiota. In addition, evidence suggests that dietary polyphenols are effective in preventing and managing neurological disorders, such as age-related cognitive decline and neurodegeneration, through a multitude of physiological functions. Dietary polyphenols are increasingly envisaged as a potential nutraceuticals in the prevention and treatment of neurological disorders, because they possess the ability to reduce neuroinflammation, to improve memory and cognitive function and to modulate the gut microbiota.

Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study

  • Park, Hyung Jin;Lee, Sang Eun;Kim, Hyeun Bum;Kim, Jae Hoon;Seo, Kyoung Won;Song, Kun Ho
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.205-208
    • /
    • 2015
  • Ten dogs were enrolled in this study: two healthy dogs, two obese dogs without other medical issues and six obese dogs with underlying diseases including pemphigus, chronic active hepatitis, hyperadrenocorticism, narcolepsy, otitis media and heartworm infection. Pyrosequencing of the 16S rRNA gene to explore the gut bacterial diversity revealed that distal gut bacterial communities of samples from patients with pemphigus, otitis media and narcolepsy consisted primarily of Firmicutes, while the major phylum of the distal gut bacterial communities in patients with chronic active hepatitis and hyperadrenocorticism was Fusobacteria. Proteobacteria were the dominant phylum in heartworm infected obese patients.

Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens - A Review

  • Choi, Ki Young;Lee, Tae Kwon;Sul, Woo Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1217-1225
    • /
    • 2015
  • Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT), the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

From the Dish to the Real World: Modeling Interactions between the Gut and Microorganisms in Gut Organoids by Tailoring the Gut Milieu

  • Na-Young Park;Ara Koh
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.70-84
    • /
    • 2022
  • The advent of human intestinal organoid systems has revolutionized the way we understand the interactions between the human gut and microorganisms given the host tropism of human microorganisms. The gut microorganisms have regionality (i.e., small versus large intestine) and the expression of various virulence factors in pathogens is influenced by the gut milieu. However, the culture conditions, optimized for human intestinal organoids, often do not fully support the proliferation and functionality of gut microorganisms. In addition, the regional identity of human intestinal organoids has not been considered to study specific microorganisms with regional preference. In this review we provide an overview of current efforts to understand the role of microorganisms in human intestinal organoids. Specifically, we will emphasize the importance of matching the regional preference of microorganisms in the gut and tailoring the appropriate luminal environmental conditions (i.e., oxygen, pH, and biochemical levels) for modeling real interactions between the gut and the microorganisms with human intestinal organoids.