• Title/Summary/Keyword: Guided Robot

Search Result 85, Processing Time 0.026 seconds

A Study on Obstacle Detection for Mobile Robot Navigation (이동형 로보트 주행을 위한 장애물 검출에 관한 연구)

  • Yun, Ji-Ho;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.587-589
    • /
    • 1995
  • The safe navigation of a mobile robot requires the recognition of the environment in terms of vision processing. To be guided in the given path, the robot should acquire the information about where the wall and corridor are located. Also unexpected obstacles should be detected as rapid as possible for the safe obstacle avoidance. In the paper, we assume that the mobile robot should be navigated in the flat surface. In terms of this assumption we simplify the correspondence problem by the free navigation surface and matching features in that coordinate system. Basically, the vision processing system adopts line segment of edge as the feature. The extracted line segments of edge out of both image are matched in the free nevigation surface. According to the matching result, each line segment is labeled by the attributes regarding obstacle and free surface and the 3D shape of obstacle is interpreted. This proposed vision processing method is verified in terms of various simulations and experimentation using real images.

  • PDF

Computed tomography-guided 3D printed patient-specific regional anesthesia

  • Jundt, Jonathon S.;Chow, Christopher C.;Couey, Marcus
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.5
    • /
    • pp.325-329
    • /
    • 2020
  • Classic anesthetic techniques for the inferior alveolar nerve, lingual nerve, and long buccal nerve blockade are achieved by estimating the intended location for anesthetic deposition based on palpation, inspection, and subsequent correlation for oral anatomical structures. The present article utilizes computed tomography (CT) data to 3D print a guide for repeatable and accurate deposition of a local anesthetic at the ideal location. This technical report aims to anatomically define the ideal location for local anesthetic deposition. This process has the potential to reduce patient discomfort, risk of nerve damage, and failed mandibular anesthesia, as well as to reduce the total anesthetic dose. Lastly, as robotic-based interventions improve, this provides the initial framework for robot-guided regional anesthesia administration in the oral cavity.

Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery

  • Han, Seung Hee
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.306-322
    • /
    • 2018
  • This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.

An Automatic Teaching Method by Vision Information for A Robotic Assembly System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kim, Jong-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • In this study, an off-line automatic teaching method using vision information for robotic assembly task is proposed. Many of industrial robots are still taught and programmed by a teaching pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and played back repetitively to perform the robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and transferred to the robot controller. This teaching process is implemented through an off-line programming(OLP) software. The OLP is developed for the robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on the assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line automatic teaching.

  • PDF

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Control of a welfare liferobot guided by voice commands

  • Han, Seong-Ho;Yoshihiro, Takita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.3-47
    • /
    • 2001
  • This paper describes the control of a health care robot (called Welfare Liferobot) with voice commands. The welfare liferobot is an intelligent autonomous mobile robot with its own control system on-board and the set of sensors to perceive an environment. It is a natural way to control the welfare liferobot by use of voice command for the usage of keyboard and mouse may present a difficult problem to the elderly and the handicapped. Voice input as the main control modality can offer many advantages. A set of oral commands is included, and each command has its associated function. These control words (commands) have to be chosen by user. Each time a voice command is recognized by the robot, it executes the pre-assigned action ...

  • PDF

On Safety Improvement through Process Establishment for SOTIF Application of Autonomous Driving Logistics Robot

  • Choi, Kyoung Lak;Kim, Min Joong;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.209-218
    • /
    • 2022
  • Today, with the development of the Internet and mobile technology, consumers' purchasing patterns have shifted from offline to online. In addition, due to the recent COVID-19, online purchases have significantly increased, and accordingly, the courier industry for logistics delivery has also grown significantly. Various logistics robots are being operated in many industrial and can reduce the labor intensity and physical and mental fatigue of workers. However, if the logistics robot does not properly recognize the people or environment around it, it can lead to a serious accident. We conducted that how logistics robots can perform safe work in a working environment such as a logistics warehouse through the application of ISO/DIS 21448 (SOTIF) to autonomous logistics transport robots. This result is expected to contribute to the operation of unmanned logistics warehouses using AGV.

Design of HCI System of Museum Guide Robot Based on Visual Communication Skill

  • Qingqing Liang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.328-336
    • /
    • 2024
  • Visual communication is widely used and enhanced in modern society, where there is an increasing demand for spirituality. Museum robots are one of many service robots that can replace humans to provide services such as display, interpretation and dialogue. For the improvement of museum guide robots, the paper proposes a human-robot interaction system based on visual communication skills. The system is based on a deep neural mesh structure and utilizes theoretical analysis of computer vision to introduce a Tiny+CBAM mesh structure in the gesture recognition component. This combines basic gestures and gesture states to design and evaluate gesture actions. The test results indicated that the improved Tiny+CBAM mesh structure could enhance the mean average precision value by 13.56% while maintaining a loss of less than 3 frames per second during static basic gesture recognition. After testing the system's dynamic gesture performance, it was found to be over 95% accurate for all items except double click. Additionally, it was 100% accurate for the action displayed on the current page.

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

PC controlled Autonomous Navigation System for GPS Guided Field Robot (GPS를 이용한 필드로봇의 PC기반 자율항법 제어 시스템)

  • Han, Jae-Won;Park, Jae-Ho;Hong, Sung-Kyung;Ryuh, Young-Sun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Navigation system is applied in variety of fields including the simple location positioning, autopilot navigation of unmanned robot tractor, autonomous guidance systems for agricultural vehicles, construction of large field works that require high precision and map making process. Particularly utilization of GPS (Global Positioning System) is very common in the present navigation system. This study introduces a navigation system for autonomous field robot that travels to the pre-input path using GPS information. Performance of the GPS- based navigation is highly depended on its receiving rate because GPS receivers do not acquire any navigation information in the period between the refresh intervals. So this study presents an algorithm that improves an accuracy of the navigation by estimation the positional information during the blind period of a low rate GPS receiver. In fact the algorithm calculated the robot's heading in a 50 Hz rate, so the blind period of an 1 Hz GPS receiver is extensively covered. Consequently implementation of the algorithm to the GPS based navigation showed an improvement in guidance accuracy. The conventional field robot directly carried an expensive control computer and sensors onboard, therefore the miniaturization and weight reduction of the robot was limited. In this paper, the field robot carried only communication equipments such as GPS module, normal RC receiver, and bluetooth modem. This enabled the field robot to be built in an economic cost and miniature size.