• Title/Summary/Keyword: Guide Rail

Search Result 123, Processing Time 0.024 seconds

Economic Analysis for Standardization R&D of Urban Rail System (도시철도 표준화 연구개발사업의 경제성 분석)

  • Chung, Choong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1694-1714
    • /
    • 2007
  • This study is to estimate economic benefits of Standardization R&D of Urban Rail System. Benefit was to be realized through standardization of main areas such as train vehicle, railway, power system, and signal system. To derive and calculate the quantitative benefit, the sources of economic impact was divided into three dimensions -operational cost savings, import substitution, and safety effects. Economic effect of the standardization was categorized based on a modified BSC model. Economic benefits from time and labor savings are converted into cost savings. Import substitution and investment multiplier effect have a positive impact in addition to cost savings. The estimation of the standardization R&D of Urban Rail System was conservatively estimated 370 billion Won. Cost effectiveness of standardized safety system was conservatively translated into economic benefit in this analysis. This study provides a practical guide to economic evaluation of the various railway R&D projects.

  • PDF

Dynamics of an AGT System Light Rail Transit with Rubber Tires (고무차륜 AGT시스템 경전철의 동특성 해석)

  • 전광식;이우식;윤성호
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.135-142
    • /
    • 1999
  • This paper deals with dynamic characteristics of automated guideway transit vehicle with rubber tires. Several models for guideway system of LRT(Light Rail Transit) have been Proposed because of the necessity of guideway system for LRT with rubber tires on exclusive rail unlike steel tires. Here, steering system and bogie system are investigated to compare with dynamic characteristics. On selecting guideway system, the way of vehicle operation should be considered and simultaneously the dynamic characteristics of the vehicle must be evaluated with respect to each guideway. The results show that stability is essential for vehicle with steering system, and that single-axle bogie system gives the good stability, though it is necessary to reduce the guide-wheel force

  • PDF

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

Proposal and Theoretical Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수을 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증)

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.56-63
    • /
    • 2002
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction farce is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geomatric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method(TFM). Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Theoretical Verification on the Motion Error Analysis Method of Hydrostatic Bearing Tables Using a Transfer Function

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new method using a transfer function is introduced in the present paper for analyzing the motion errors of hydrostatic bearing tables. The relationship between film reaction force in a single-side hydrostatic pad and the form error of guide rail is derived at various spatial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called 'the averaging effect of an oil film' quantitively. It is found that the amplitude of film force is reduced as the spatial frequency increases or the relative width of the pocket is reduced. The motion errors of a multi pad type table are estimated using a transfer function, the form errors of a guide rail and the geometric relationship between the pads. The method is named as the Transfer Function Method (TFM). The motion errors calculated by the TFM show good agreement with the motion errors calculated by the Multi Pad Method considering the entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Evaluation of Dynamic Fatigue Life for Maglev Bogie Frame (자기부상열차의 동적 거동을 고려한 내구해석 기법개발)

  • Han, Sung-Wook;Woo, Kwan-Je
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • In domestic developing magnetically levitated (Maglev) vehicle, bogie frames install electromagnets which provide the vehicles to run with levitation and guidance forces; moreover, the linear motors used for traction are integrated into the same mechanical structure. This paper presents the process which predicts the evaluation of life cycle for bogie frame on various running conditions. Durability analysis considering vibration effect is simulated by using random loads resulted from dynamic simulation which takes into account the irregularities of guide rail. And it supports additional weak points which were not examined in static analysis.

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail (DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석)

  • Shim, Jongyoup;Khim, Gyungho;Hwang, Jooho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System (철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안)

  • Kim, Hyo-San;Park, Joon-Hyung;Kim, Myung-Ryule;Park, Kwang-Hwa;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF

Air-gap Signal Treatment at rail-joint in Maglev System (자기부상시스템에서 레일 이음매 통과시 공극 처리방법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Kim, D.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.310-312
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF