• Title/Summary/Keyword: Guidance and control

Search Result 888, Processing Time 0.024 seconds

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

Implicit guidance using linear tangent pitch program (선형 탄젠트 피치 프로그램을 이용하는 Implicit 유도)

  • 진재현;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.686-691
    • /
    • 1992
  • Implicit guidance algorithm can deal with the trajectory error rapidly, but it has to save much data. If, however, the control variable is represented by a specific function form, a few parameters will suffice to define the control variable. In this paper, we study the method of updating the parameters of the control function for the reduction of trajectory errors. The method proposed here does not require much memory for guidance.

  • PDF

Time-to-go Polynomial Guidance Law for Target Observability Enhancement (표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙)

  • Kim, Tae-Hun;Lee, Chang-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we propose a new guidance law for target observability enhancement, which can control both terminal impact angle and acceleration. The proposed guidance law is simple form, combined conventional time-to-go polynomial guidance and a additional bias term which consists of relative position and proportional gain. The guidance law provides oscillatory flight trajectory and it maintains the conventional time-to-go polynomial guidance performance. To investigate the characteristics of the guidance law, we derive the closed-form solution, and various simulations are performed for proving the validity of the proposed guidance.

A Study of Missile Guidance Performance Enhancement using Multi-sensor Data Fusion in a Cluttered Environment (클러터 환경에서 다중센서 정보융합을 통한 유도성능 개선 연구)

  • Han, Du-Hee;Kim, Hyoung-Won;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • A MTG (Multimode Tracking and Guidance) system is employed to compensate for the limitations of individual seekers such as RF (Radio frequency) or IIR (Imaging Infra-red) and to improve the overall tracking and guidance performance in jamming, clutter, and adverse weather environments. In the MTG system, tracking filter, data association, and data fusion methods are important elements to maximize the effectiveness of precision homing missile guidance. This paper proposes the formulation of a Kalman filter for the estimation of line-of-sight rate from seeker measurements in missiles guided by proportional navigation. Also, we suggest the HPDA (Highest Probability Data Association) and data fusion methods of the MTG system for target tracking in the adverse environments. Mont-Carlo simulation is employed to evaluate the overall tracking performance and guidance accuracy.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

Guidance and Control System Design for the Descent Phase of a Vertical Landing Vehicle

  • Hoshino, Katsutoshi;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.47-52
    • /
    • 1998
  • This study deals with guidance and control laws for an optimal reentry trajectory of a vertical landing reusable launch vehicle (RLV) in the future. First, a guidance law is designed to create the reference trajectory which minimizes propellant consumption. Then, a nonlinear feedback controller based on a linear quadratic regulator is designed to make the vehicle follow the predetermined reference trajectory, The proposed method is simulated for the first stage of the H-II scale rocket.

  • PDF

Autonomous-guided orchard sprayer using overhead guidance rail (요버헤드 가이던스 레일 추종 방식에 의한 과수방제기의 무인 주행)

  • Shin, B.S.;Kim, S.H.;Park, J.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.489-499
    • /
    • 2006
  • Since the application of chemicals in confined spaces under the canopy of an orchard is hazardous work, it is needed to develop an autonomous guidance system for an orchard sprayer. The autonomous guidance system developed in this research could steer the vehicle by tracking an overhead guidance rail, which was installed on an existing frame structure. The autonomous guidance system consisted of an 80196 kc microprocessor, an inclinometer, two interface circuits of actuators for steering and ground speed control, and a fuzzy control algorithm. In addition, overhead guidance rails for both straight and curved paths were devised, and a trolley was designed to move smoothly along the overhead guidance rails. Evaluation tests showed that the experimental vehicle could travel along the desired path at a ground speed of 30 $\sim$ 50 cm/s with a RMS error of 5 cm and maximum deviation of less than 12 cm. Even when the vehicle started with an initial offset or a deflected heading angle, it could move quickly to track the desired path after traveling 2 $\sim$ 3 m. The vehicle could also complete turns with a curvature of 1 m. However, at a ground speed of 50 cm/s, the vehicle tended to over-steer, resulting in a zigzag motion along the straight path, and tended to turn outward from the projected line of the guidance rail.

Guidance Scheme for Air-to-Ground Anti-tank Missiles Under Physical Constraints (물리적 구속조건을 고려한 공대지 대전차 유도탄의 유도기법 연구)

  • Park, Bong-Gyun;Um, Tae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • A composite guidance scheme is proposed for air-to-ground anti-tank missiles launched from an airborne platform. Long-range anti-tank missiles usually use a fiber optic line (FOL) for the datalink between an operator and the missile to obtain real-time target information and to command the missile. Also, impact angle control is used to maximize the warhead effectiveness, but it should be carefully implemented due to interference between the launch platform and the FOL. Thus, the proposed guidance scheme takes into account both impact angle and FOL constraints. Under system lag and acceleration limits, a selection method of guidance gains and calculation logic of the maximum achievable impact angle are proposed for a guideline of practical implementation. The performance of the proposed guidance scheme is investigated by nonlinear simulations with various engagement conditions.

Bond graph modeling and multivariable control of maglev system with a combined lift and guidance (편심배치방식 자기부상 시스템의 본드선도 모델링 및 다변수 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1091-1097
    • /
    • 1991
  • A logical and systematic procedure to derive a mathematical model for magnetically levitation(maglev) systems with a combined lift and guidance is developed by using and graph. First, bond graph is constructed for the energy-feeding system with magnetic leakage flux. And, the overall maglev system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond notations. Finally, the LQG/LTR control systems are designed for single-input single-output and for multi-input multi-output maglev systems. In this paper, it has been shown that the bond graph is an excellent method for modeling multi-energy domain systems such as maglev systems and the multivariable control system is required to improve the performance of the maglev system with a combined lift and guidance.

  • PDF

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.