• Title/Summary/Keyword: Guidance and control

Search Result 890, Processing Time 0.028 seconds

Aircraft CAS Design with Input Saturation Using Dynamic Model Inversion

  • Sangsoo Lim;Kim, Byoung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.315-320
    • /
    • 2003
  • This paper presents a control augmentation system (CAS) based on the dynamic model inversion (DMI) architecture for a highly maneuverable aircraft. In the application of DMI not treating actuator dynamics, significant instabilities arise due to limitations on the aircraft inputs, such as actuator time delay based on dynamics and actuator displacement limit. Actuator input saturation usually occurs during high angles of attack maneuvering in low dynamic pressure conditions. The pseudo-control hedging (PCH) algorithm is applied to prevent or delay the instability of the CAS due to a slow actuator or occurrence of actuator saturation. The performance of the proposed CAS with PCH architecture is demonstrated through a nonlinear flight simulation.

A Study on Integral Equalities Related to a Laplace Transformable Function and its Applications

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of a Laplace transformable function. Using the definition of the Laplace transform, it shows that Laplace transformable functions have to satisfy the integral equalities in the time-domain, which can be applied to the understanding of the fundamental limitations on the control system represented by the transfer function. In the unity-feedback control scheme, another integral equality is derived on the output response of the system with open-loop poles located in the convergence region of the output function. From these integral equalities, two sufficient conditions related to undershoot and overshoot phenomena in the step response, respectively, are investigated.

Force Control of a Blind Mobile Robot: Analysis, Simulations and Experiments (장님 이동 로봇의 힘 제어 : 분석, 시뮬레이션 및 실험)

  • Jeon, Poong-Woo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.798-807
    • /
    • 2003
  • We propose a blind mobile robot force control algorithm that uses force information as a guidance toward to the goal position. Based on the mobile robot dynamics, the control law is formed from explicit force errors. Simulation studies are conducted based on the kinematics and the dynamics of the mobile robot. Simulation results show that good force tracking can be achieved. In order to confirm simulation results, experiments are performed. The robot is commanded to follow unknown environment with maintaining a certain desired force. Experimental results show that the blind mobile robot successfully maintains contact with a regulated desired force and arrives at the goal position.

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

Longitudinal Automatic Landing in AdaptivePID Control Law Under Wind Shear Turbulence

  • Ha, Cheol-keun;Ahn, Sang-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • This paper deals with a problem of automatic landing guidance and control ofthe longitudinal airplane motion under the wind shear turbulence. Adaptive gainscheduled PID control law is proposed in this paper. Fuzzy logic is the main part ofthe adaptive PID controller as gain scheduler. To illustrate the successful applicationof the proposed control law to the automatic landing control problem, numericalsimulation is carried out based on the longitudinal nonlinear airplane model excited bythe wind shear turbulence. The simulation results show that the automatic landingmaneuver is successfully achieved with the satisfactory performance and the gainadaptation of the control law is made adequately within the limited gains.

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

Numerical investigation of an add-on thrust vector control kit

  • AbuElkhier, Mohamed G.;Shaaban, Sameh;Ahmed, Mahmoud Y.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • Instead of developing new guided missiles, converting unguided missile into guided ones by adding guidance and controlkits hasbecome aglobaltrend.Ofthemost efficient andwidelyused thrust vector control(TVC) techniquesin rocketry isthe jet vanes placed inside the nozzle divergentsection. Upon deflecting them, lift created on the vanesistransferred to the rocket generating the desired control moment. The presentstudy examinesthe concept of using an add-on jet vaneTVC kit to a plain nozzle.The impact of adding the kit with different vaneslocations and deflectionanglesisnumericallyinvestigatedbysimulatingtheflowthroughthenozzlewiththekit.Twohingelocations are examined namely, at 24% and 36% of nozzle exit diameter. For each location, angles of deflection namely 0°, 5°, 10°, and 15° are examined. Focus is made on variation of control force, thrust losses, lift and drag on vanes, jet inclination, and jetflow structure withTVCkit design parameters.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어)

  • 이수영;이석한;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

Automatic Berthing Control of Ship Using Adaptive Neural Networks

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Secondly, computer simulations of automatic ship berthing are carried out in Pusan bay to verify the proposed controller under the influence of wind disturbance and measurement noise. The results of simulation show good performance of the developed berthing control system.