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A Study on Integral Equalities Related to a Laplace Transformable
Function and its Applications

Byung-Moon Kwon, Hee-Seob Ryu, and Oh-Kyu Kwon

Abstract: This paper establishes some integral equalities formulated by zeros located in the
convergence region of a Laplace transformable function. Using the definition of the Laplace
transform, it shows that Laplace transformable functions have to satisfy the integral equalities in
the time-domain, which can be applied to the understanding of the fundamental limitations on
the control system represented by the transfer function. In the unity-feedback control scheme,
another integral equality is derived on the output response of the system with open-loop poles
located in the convergence region of the output function. From these integral equalities, two suf-
ficient conditions related to undershoot and overshoot phenomena in the step response, respec-

tively, are investigated.

Keywords: Laplace transform, fundamental limitation, unity-feedback control, undershoot,

overshoot.

1. INTRODUCTION

Linear transforms are well-known as providing
techniques for solving problems in linear systems. In
particular, the Laplace transform method is an opera-
tional method that can be used advantageously for
solving linear differential equations. The Laplace
transformation dates back to the work of the French
mathematician, Pierre Simon Marquis de Laplace
(1749-1827), who used it in his work on probability
theory in the 1780s. It has played an important part in
the theory of many branches of science and engineer-
ing [1]. In the field of control engineering, the
Laplace transform theory is necessary for understand-
ing the linear control theory since the systems used in
the control engineering are usually represented by the
transfer function which has been Laplace transform
[1-3]. Moreover, the Laplace transform, together with
the Fourier transform, has been applied to the formu-
lation of the fundamental limitations on the transfer
function, like the number of sign changes [4] or step
response extrema [5-7].

Actually, there are always fundamental limitations
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involved with any feedback control system. Much re-
search has been conducted to clarify these limitations
imposed by the inherent characteristics of the physical
system. Most is formulated in the frequency domain
for linear SISO(Single-Input, Single-Output) systems
[8-9] and is extended to MIMO(Multi-Input, Multi-
Output) systems [10] as well as nonlinear systems [11]
Other limitations have also been developed in the
time-domain based on Laplace transform [4,6,9,12].
As a result, it has been realized that nonminimum
phase systems [8-10,12] or systems with jw -axis
zeros [15] compared with minimum phase systems,
have more various fundamental limitations associated
with the achievable closed-loop transfer function,
closed-loop gain margin, loop transfer recovery, sensi-
tivity or complementary sensitivity function, etc. In
many cases, these limitations on the achievable per-
formances are utilized to adjust trade-off relations be-
tween design specifications [7-10,12].

In this paper, we investigate some integral equalities
about a Laplace transformable function, which can
also be applied to understanding of the fundamental
limitations on the control system represented by the
transfer function. In the unity-feedback control scheme
another integral equality is also derived on the output
response of the system with open-loop poles located in
the right area of the dominant pole of the output func-
tion. In particular, two examples show the explicit in-
tegral equalities which are satisfied by the impulse and
the unit-step responses of the system. Based on these
equalities, the performance limitations of the system,
undershoot and overshoot phenomena, are established
in the step response.

The layout of this paper is organized as follows: In
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Section 2, we present the mathematical preliminaries,
notation, definitions, and previous results necessary
for the understanding of the main results in this paper.
In Section 3, the integral equalities in the time-
domain for a class of Laplace transformable functions,
which includes the physical systems with rational
transfer function, are formulated. It is shown that the
proposed results can be applied to the feedback con-
trol system in Section 4. A simple example is in-
cluded in Sections 3 and 4. Two sufficient conditions
related to undershoot and overshoot phenomena of
the system, respectively, are shown in Section 5. The
concluding remarks are given in Section 6.

2. PRELIMINARIES AND NOTATIONS

The intent of this section is to state the background
necessary for the statement of the main results, which
covers the definition of the Laplace integral and some
properties of the Laplace transform utilized in this
paper.

Let f(r) be a function with the following proper-
ties:

(1) f(®)=0,for —oo<t<0.
(2) There exists a real number ¢ such that f(r)e™ is

absolutely integrable over —oo <t < co,
When f(r) has the above properties, f(z)is said to

be Laplace transformable. If f(¢)is Laplace trans-
formable, then the integral

F(s)2L[f ()]

_— (1

= jo e F()dt
exists for a given value of s. The variable s is referred
to as the Laplace operator, which is a complex vari-
able. The integral defined in (1) is a well-known
(one-sided) Laplace transform [1,4]. The functions
f() and F(s)are a Laplace transform pair. Con-

vergence properties of the integral (1) are examined
in the following lemmas [1,4]:

Lemma 1: If the integral (1) converges for
§=0,+ jw,, then it converges for all s=0+ jw
with o> 0,.

Lemma 2: The convergence region of the integral
(1) is a half plane.

Lemma 1 and Lemma 2 allow the establishment of
the convergence region of the Laplace transform.

The Laplace transformation has many useful prop-
erties, which are important to the control engineering
[11,[2],[3]. In this paper, it used the complex shifting
property of the Laplace transform as follows:

Lemma 3: The Laplace transform of f(r) multi-

plied by e *, where ¢ is a constant, is equal to

F(s) with s replacedby s+, e

Lle " fO)]=F(s+a). )

In addition, let us define undershoot and overshoot
phenomena in the step response of the system pro-
vided that the DC gain of the system is positive(7].
Without loss of generality, let the step input be a posi-
tive value.

Definition 1: The step response is said to have un-
dershoot if there is an open interval (a,b) such that

y,(1)<0, Vie (a,b), 3)

where y, is the step response of the system.

Definition 2: The step response y,(Z) is said to
have overshoot if there is an open interval (c,d)
such that

y,(t) <0, Vte(c,d), 4)

where y,(#) is the step response of the system and

K is the magnitude of the step input.

Note that Definition 1 includes Type A undershoot,
i.e. the initial undershoot, as well as Type B under-
shoot [13], and Definition 2 is the overshoot for the
system with DC gain smaller than or equal to the
unity.

It is assumed in this paper that f(r) is always
Laplace transformable, and F(s) is the proper,

minimal function and has a real part of all poles less
than y<0. Note that the linear system is always

Laplace transformable and can be represented by the
rational transfer function.

3. INTEGRAL EQUALITIES

This section investigates some integral equalities
on the time-domain representation of the function
S (@), which is imposed by the complex values lo-

cated in the convergence region of F(s).

Lemma 4: For Re[ Z] > 7, the Laplace transform
pair, f(f) and F(s), meets integral equalities as
follows:

j: e cos(wt) f (1)dt =Re[F ()], 6))

j: e~ sin(wr) f (t)dt =—Im[F ()], (6)

where s=0+ jw.
Proof: From Lemma 3, the Laplace transform of
e ¥ f(t) can be written as
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F(s+y)= j:e‘”e'l' f(D)dtlim
. - (7N
= jo eI £ (1) dy,

Since F(s+ y)is asymptotically stable for Re[ ,1’]
>y, it is clear that F(s+y) has the closed

RHP(right half plane) as its region of convergence.
Hence, the value of s=0 is obviously in the con-
vergence region of (7). Consequently, after evaluation
(7) at s =0, the result follows by using the fact that

e’ =cos(wt) — jsin(wr), (8)

which completes the proof. O
Equations (5) and (6) in Lemma 4 have to always be
satisfied by the function f(r) for all complex value

¥ in the convergence region of F(s), which has

nothing to do with minimum or nonminimum phase
functions. It is noted that the convergence region is
the right area of the dominant pole. Lemma 4 implies
some important results according to the particular
values of ). For example, if the value of yis

taken as 0 in Lemma 4, it can obtain the well-known
result that the integral of f(¢) is equal to the DC

gain of F(s), ie.

[ radi=x, ©

where & is the DC gain of F(s).

Note that (6) in Lemma 4 is meaningless when the
value of y is taken as a real value since the right

and left parts are identically all 0. If the function
f () 1is Laplace transformable, it has to satisfy the

integral equalities such as (5), (6) and (9). Lemma 4
can be converted into the more simplified forms in
the particular functions with zeros located in the con-
vergence region of the Laplace transform.

Theorem 1: Let F(s) have real zeros at s=z
for i=1,2,---,, and complex conjugate zeros at
s=a, t jb, for k=12,--,r,, which have all real
parts larger than J . Then f(r) has to satisfy

[IE@+T.0+T,01f ()dr =0,  (10)

where E (f) is a linear combination of e ™',

I'_(#) is a linear combination of e ' cos(b,t), and

T (t) is alinear combination of e *'sin(b,?).
Proof: Since F(s) has the right area of ¥ as its

region of convergence, the real zeros z, and the

complex conjugate zeros a, * jb, are located in the

convergence region. Let us take y =z, and (5) in
Lemma 4 can be rewritten as

[TE.(0f dr=0 (11)

since F(z;)=0. Similarly, letus take y=a, + jb,.
Then (5) and (6) in Lemma 4 can be reformulated as

j:[rc ) +T.(O] f()dt=0. (12)

Hence, the result comes from (11) and (12), which
completes the proof. O
The next example shows that the integral equalities
presented in Theorem 1 are be satisfied by the im-
pulse and the unit step responses of the system repre-
sented by the rational transfer function.

Example 1: Let us consider a 4th-order system
G(s) as follows:

725> +360s* —648s + 360
st 1857 +1195 +3425 +360°

which has the poles at s=-3,-4,-5,—6 and the
zeros at s=1,2% j. The impulse response v, ()

G(s)=

13)

and the unit step response y,(¢) can be computed as

y,(£) =1248¢™ — 6660¢ ' +10800e™ —5460e™,

14
y,(£) =1-416¢ +1665¢™" —2160e™ +910e™*,
(15)
respectively. From (9), we can see that
[ ywdi=1, (16)
and from Theorem 1, we can also see that
_[: ey, (dt =0, a7
j( )°° e cos(t)y,()dr =0, (18)
j: e sin(r)y, (1)dt =0, (19)
j: ey, (1)dr =0, (20)
j: e cos(t)y,(1)dr =0, 1)
j( f e sin(t)y, (1)dt =0, (22)

The linear combinations of (17)-(19) and (20)-(22)
have to also be satisfied by the impulse response
¥,(¢) and the unit step response Yy, (), respectively.
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These integral equalities can be directly verified by
using the impulse response (14) and unit step re-
sponse (15).

Theorem 1 gives some information about the per-
formance limitations on the response of the system
with those zeros. For example, if the system with a
real zero at s=z, is larger than , its impulse re-

sponse Y, () has to satisfy
ﬂ)ﬂﬁwnmzo, (23)

which states that y,(¢r) must have sign changes at

some time instant since e ' >0 for all time ¢>0.
Ir means that the step response of the system has the
extrema such as the undershoot and the overshoot. As
a matter of fact, it is well-known that real zeros lo-
cated between the dominant pole and the imaginary
axis necessarily contribute to the overshoot, and RHP
real zeros have to exhibit the initial undershoot in the
step response [4],[6],[91,[14]. If s=z is the RHP

zero, the step response y,(¢) also satisfies
[eomoamo.

which confirms that RHP real zeros are the cause of
the undershoot phenomena in the step response.

For the second example, let us consider the system
with complex conjugate zeros on the imaginary axis
at s==jb. In this case, (10) in Theorem 1 can be

simply rewritten as
I: cos(bt)y, (1)dt =0, (25)

where 1y, (t) is the impulse response of that system.
Let 7 be the settling time such that y,(z)=0 for
all time ¢>7. Assume that b7 <« 7£/2. Then, using
the Taylor series expansion for cos(br), integral
equality (25) yields

[“wwdr=0, (26)

which contradicts (9) for the system with nonzero DC
gain, i.e. the integral of the impulse response has to
be equal to the nonzero DC gain. It means that the
complex conjugate zeros on the imaginary axis nec-
essarily imply a lower bound on the achievable set-
tling time of the system. This result coincides with
the work of G. C. Goodwin et al. [15], which has
shown that fundamental limitations on the achievable
settling time exist if systems have zeros on or near
the jw -axis.

4. APPLICATIONS TO FEEDBACK
CONTROL SYSTEM

Let us consider the unity-feedback control system as
shown in Fig. 1. It is the most commonly used system
configuration with the controller placed in series with
the controlled plant [2]. In Fig. 1, the symbols have
the following meaning:

P(s) plant transfer function,

K (s) controller transfer function,

r(t) reference input,

e(t) error signal,

u(t) controller output or plant input,

y(t) plant output.

Let us define the complementary sensitivity function
by

T(s)2 K(s)P(s)

S 27)
1+ K(s)P(s)

which is also the closed-loop transfer function be-
tween the reference input r(t) and the plant output

y(¢). Hence, Y(s), which is the Laplace transform
of y(z), can be written as

Y(s)=T(s)R(s), (28)

where R(s) is the Laplace transform of r(f). The

closed-loop transfer function has the unionized zeros
of the plant and controller provided that there is no
pole-zero cancellation, i.e. the open-loop zeros are
not changed in spite of the feedback control scheme
as shown in Fig. 1. The results presented in the previ-
ous section can also be directly applied to the closed-
loop system. Moreover, if p is the open-loop pole
of the unity-feedback system, the closed-loop transfer
function 7(s) always satisfies

T(p)=1, 29
and equivalently,
Y(p)=R(p). (30)

Similarly to Theorem 1, the open-loop poles located

" in the convergence region of Y(s) yield the integral

equalities as follows:
Corollary 1: If Y(s) has the open-loop poles lo-

e(t) u(t)

r(I)vjf_Cf—» K(s) r\;P(s) > (1)

Fig. 1. The unity-feedback control system.
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cated in the right area of the dominant pole, then
¥(t) has to satisfy

J, e cos(Bry(dt =Re[R(p)], (1)

J, € sin(By@)dt =Im[R(PY,  (32)

where p=a+ jf and p=a-— jf are those com-
plex conjugate poles.
Proof: If we take y =p in Lemma 4, the result

immediately follows from (5) and (6) since
Y(p)=R(p), which completes the proof. O

In the case that the system has an open-loop real
pole at s =« located in the convergence region, its
response y(t) has to satisfy

j: e y(t)dt = R(c) (33)

from Corollary 1. It is noted that if the reference in-
put is the impulse, then

R(p)=1, (34)
and if the reference input is the step, then
K
R(p)=—, (35)
b

where K 1is the magnitude of the step input. When
y(t) is the step response, the open-loop poles lo-
cated in the convergence region of Y (s) are equiva-
lent to unstable open-loop poles. The next example
shows that integral equalities presented in Corollary 1
are satisfied by the impulse and the unit step re-
sponses of the closed-loop system.

Example 2: Let us consider a plant P(s) and a

controller K(s) as follows:

1
Pis)=————, 36
8) S =25 +2s (36)
2
K(s)= 9020s° + 34105 + 5040 37)

s° +295” +3515+2309

and the closed-loop transfer function can be com-
puted as

_ 9020s” +3410s +5040
T s+ +( ) HO(s+T)

T(s) 38)

It has the impulse response y,(#), and the unit step

response y,(t) as follows:

6
y, ()= ZAie—(m)x , (39)

12
YO =1+ Ae ", (40)

k=7

where the coefficients A, - A,can be properly com-
puted by the closed-loop transfer function (38). The
unity-feedback control system has the open-loop
marginally stable and unstable poles at s=0,1% j

on the complex plane. From (9) and Corollary 1, we
can see that

I: y()di=1, @1
[ costyy, i =1, @)
e sin(y, (0t =0, )
[ et cos)y, (i = —;- @4)
I: ™ sin(t) y, (t)dt =% @5)

since the open-loop poles at s=0,1% j are located
in the convergence region of y,(7), and the open-
loop poles at s=1x j are located in the conver-
gence region of y,(t). Equations (41)-(45) can be
verified by using impulse response (39) and unit step

response (40). Note that the output responses of the
closed-loop system also satisfy Theorem 1.

5. UNDERSHOOT AND OVERSHOOT
PHENOMENA IN THE STEP RESPONSE

Based on the results of the previous sections, the
performance limitations on the step response of the
system are established in this section. Let us consider
a situation in which the impulse response is equal to
0 after a finite time period, which is previously used
in [15]. Although this assumption of an exact settling
time would be unrealistic, corresponding results pre-
sented in this paper can be extended so that similar
limitations hold under the less restrictive set of as-
sumptions.

Definition 3: Let us define the exact settling time
of a system as follows:

t, =inf{7:y,()=0, "t27}, (46)

where y,(f) is the impulse response of the system.

Note that the exact settling time is also identically
defined as

t,=inf{z:y,()=V,, “t27}, (47)

where y,(f) and V_ are the step response and its

steady-state value, respectively.
It is firstly shown which system has the undershoot
phenomena in the sense of Definition 1 as follows:
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Theorem 2: For a stable system with RHP com-
plex conjugate zeros at s=a=x jb on the complex

plane, the step response has the undershoot if
bt, <% it 2, (48)
2 b

where ¢, is the exact settling time.

Proof: Let E (1)=0, T .(t)=0, and I ()=
¢ “'sin(bt) in Theorem 1, and the step response
v,(t) has to satisfy

0= [ e sin(bt)y, (1)dt

= [ e sinbr)y, (n)dt
. (49)
+V. L e “ sin(bt)dt

since the system has RHP complex conjugate zeros at
s=a jb,where V_ is the steady-state value of the

step response. From (49), we can obtain the relation

f ) e sin(bt) y, (1)dt

—ar,

= _;sz—[a sin(bt, )+ beos(bt,)]  (50)
a

Vxe"tll\ _ a
=————cos| bt —tan” — |.
a +b ‘ b

Hence, if bt, <m/2+tan"'(a/b), then y,(r) will
take both positive and negative signs since the right
part of (50) is always negative, and e “ sin(bt) >0

forall te [0, t_s_] , which completes the proof. n

It is noted that the value of tan '(a/b) is given by

OStan"%S% 1)

since a>0 and b>0.1f a=>b, (48) in Theorem
2 leads to the result

3

< —
bt < 2 . (52)
Theorem 2 also implies that the system with RHP
real zeros, ie. the case of b=0, always has the
undershoot in the step response without any relation
with the settling time. Although it is well-known that
SISO LTI continuous-time systems with an odd num-
ber of RHP real zeros have the initial undershoot on
the step-type reference input [6,9,13-14] the
corresponding result has not been presented for the
system with RHP complex conjugate zeros related to

the undershoot phenomena in the step response [7].
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For the unity-feedback system, another result re-
lated to the overshoot in the sense of Definition 2 can
be induced by (33) [7,9].

Lemma 5: The step response of a stable unity-
feedback system with an open-loop unstable real pole
must have the overshoot in the sense of Definition 2.

Proof: Let Y and s=a be the maximum

value of the step response and an open-loop unstable
real pole of the system, respectively. Then (33) can
be rewritten as

K i —at
= j( e y(nt
<Y, . J.(:ee“"dt
Y
— max (53)
o

since R(a)= K/« , where K is the magnitude of
the step input. Hence, Y > K, i.e. a stable unity-

feedback system with an open-loop unstable real pole
must have the overshoot in the sense of Definition 2,
which completes the proof. (]

Lemma 5 states that any unity-feedback controller,
{\it e.g.} the conventional PID controller, does not
make the step response without the overshoot in the
sense of Definition 2 if the plant P(s) has an un-

stable real pole. In the case that the DC gain of the
system is larger than 1, the overshoot is obviously
larger than the magnitude of the step input, but it
might be smaller than the steady-state value of the
step response.

6. CONCLUSIONS

In this paper, we have presented some time-domain
integral equalities, which have to be satisfied by the
Laplace transformable function. In the unity-
feedback control scheme, it has derived another inte-
gral equality on the output response of the closed-
loop system with open-loop poles located in the con-
vergence region of the output function. These results
have been verified by using simple examples. Using
the integral equalities, it has been shown that a sys-
tem, which satisfies Theorem 2, must have the under-
shoot phenomena in the step response. It has also
been shown that a plant with an unstable real pole
must have the overshoot in the step response pro-
vided that the unity-feedback scheme is used.

Integral equalities presented in this paper can be
applied to the understanding of the fundamental limi-
tations of the control system since it is represented by
the transfer function which has been Laplace trans-
form. It requires further research to find the other
fundamental limitations by utilizing the proposed
integral equalities.
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